
i

Master’s Thesis

Mental Simulation for Autonomous

Learning and Planning Using an

Ontology-Based Modeling

Framework

Yuri Goncalves Rocha

Department of Electrical and Computer

Engineering

The Graduate School

Sungkyunkwan University

ii

Master’s Thesis

Mental Simulation for Autonomous

Learning and Planning Using an

Ontology-Based Modeling

Framework

Yuri Goncalves Rocha

Department of Electrical and Computer

Engineering

The Graduate School

Sungkyunkwan University

The author of this thesis is a student who is sponsored by

the Global Korea Scholarship program.

iii

Mental Simulation for Autonomous

Learning and Planning Using an

Ontology-Based Modeling

Framework

Yuri Goncalves Rocha

A Master's Thesis Submitted to the Department of

Electrical and Computer Engineering and the Graduate School

of Sungkyunkwan University in partial fulfillment of the

requirements for the degree of Master of Science in

Engineering

April 2020

Supervised by

Tae-Yong Kuc

Major Advisor

iv

This certifies that the Master's Thesis

of Yuri Goncalves Rocha is approved.

 Committee Chairman:

 Committee Member:

 Major Advisor:

The Graduate School

Sungkyunkwan University

June 2020

v

 Table of Contents

List of Tables .. vii

List of Figures ... vii

Abstract .. viii

1. Introduction .. 1

2. Related Work .. 4

2.1 Knowledge and Semantic Modeling ... 4

2.2 Mental Simulation on Humans .. 6

2.3 Mental Simulation on Robots .. 7

2.4 Reinforcement Learning ... 9

2.5 Motion Planning .. 11

3. Automatic Mental Simulation ... 13

3.1 Triplet Ontologic Semantic Modeling .. 13

3.2 Environment Description .. 15

3.3 Robot Description ... 15

3.4 Generating the Mental Simulation .. 17

4. Mental Simulation Application ... 21

4.1 Reinforcement Learning ... 21

4.1.1 Problem Definition ... 22

4.1.2 Q-Learning .. 23

4.1.3 Policy Gradients .. 24

4.1.4 Actor-Critics ... 25

4.1.5 Deep Deterministic Policy Gradients ... 26

4.1.6 Twin Delayed DDPG .. 28

4.2 Motion Planning .. 31

4.2.1 Waypoint Generator .. 32

4.2.2 Hybrid PRM-RL Planner .. 33

vi

5. Experiments and Discussion ... 35

5.1 Number of Samples .. 35

5.2 Loss Function Regularizer ... 39

5.3 Hybrid Navigation ... 42

6. Conclusion and Future Work ... 45

References ... 47

논문요약 ... 52

vii

List of Tables

Table 1 - Map Information ... 36

Table 2 - Optimized Number of Samples .. 40

Table 3 - Navigation Task Results .. 43

List of Figures

Figure 1 - TOSM description ... 14

Figure 2 - Differential robot used in this work ... 16

Figure 3 - Robot OWL datagraph ... 17

Figure 4 - Mental simulation building steps and data-flow 18

Figure 5 - Environment generated by the mental simulation algorithm 19

Figure 6 - TD3 architecture for autonomous navigation 31

Figure 7 - Hybrid Planner Structure ... 34

Figure 8 - Mapped Environments. The mapped area is shown in red. 36

Figure 9 - PRM performance based on the number of samples. 37

Figure 10 - Moving average of the rewards obtained during each training. ... 41

Figure 11 - Long-range navigation task. .. 43

file:///E:/%5bFinal%20Version%5dYuri_Master_Thesis.docx%23_Toc44688961
file:///E:/%5bFinal%20Version%5dYuri_Master_Thesis.docx%23_Toc44688962
file:///E:/%5bFinal%20Version%5dYuri_Master_Thesis.docx%23_Toc44688963
file:///E:/%5bFinal%20Version%5dYuri_Master_Thesis.docx%23_Toc44688964
file:///E:/%5bFinal%20Version%5dYuri_Master_Thesis.docx%23_Toc44688965
file:///E:/%5bFinal%20Version%5dYuri_Master_Thesis.docx%23_Toc44688966
file:///E:/%5bFinal%20Version%5dYuri_Master_Thesis.docx%23_Toc44688968
file:///E:/%5bFinal%20Version%5dYuri_Master_Thesis.docx%23_Toc44688969
file:///E:/%5bFinal%20Version%5dYuri_Master_Thesis.docx%23_Toc44688970

viii

Abstract

Mental Simulation for Autonomous Learning and

Planning Using an Ontology-Based Modeling

Framework

Cognitive science findings have shown that humans have an outstanding

ability to create simulated worlds on their minds. Those simulated environments

can be used to prospect into the future, re-act memories from the past, simulate

different outcomes for a known situation, and, ultimately, learn and test planned

actions without the need to act on the physical world. Such cognitive skills could

similarly enhance current robotic systems, allowing them to predict the

outcomes of their planned actions before executing them. It also provides a

platform that can be run autonomously to perform reinforcement learning

algorithms, gradually improving the robot’s skills. Hence, the environment and

the robot itself should be modeled using an information-rich descriptive

framework.

In this work, we used and expanded the Triplet Ontological Semantic Model

to represent the robot and its surroundings. This modeled data was used to

autonomously generate a complete simulated world, without the need for human

aid. This simulated world was used to train a reinforcement learning policy for

autonomous navigation. We also proposed a hybrid navigation method that

combines classical planners with the trained policy, improving its long-term

navigation capabilities.

Experiment results show that the mental simulation can be used to both train

ix

the policy and verify a plan feasibility. The proposed method was able to

perform long-distance navigation tasks using only sparse range data and taking

7ms to execute a control command.

Keywords: Mental Simulation, Autonomous Navigation, Reinforcement Learning,

Path Planning, Probabilistic Roadmaps

1

1. Introduction

Early studies on cognitive science [1] proposed that mental simulation is one

of the fundamental cognitive skills. Humans (and perhaps other animals as well

[2]) can predict and anticipate outcomes by recalling past experiences and re-

simulating them in their minds. Such ability is considered one of the foundations

on episodic memory [3] and paramount for task planning during navigation [4].

It can be subsumed as building a simulated world inside one’s mind, which is

capable of working on its own (with varying levels of complexity) and using this

world to review, infer and predict outcomes, which finally shapes one’s behavior

on the real world.

Mental simulation theory starts from the presumption that behaviors can be

simulated, perception systems can also be simulated, and outcomes can be

anticipated by combining simulated behaviors and perception [5]. Early

researches on cognitive science and neuropsychology showed that such a

mechanism is also used to predict one’s counterpart’s thoughts and behaviors

[6].

During the early stages of artificial intelligence, Alan Turing proposed that,

to think and speak like a human, a robot might need a human-like body, capable

of mimicking sensorial and motor capabilities, and that the development of its

cognitive skills should be as simple as teaching a child [7]. Some more recent

works suggested that cognitive capabilities, such as mental simulation, should

not only be integrated into learning and planning algorithms, but also be their

central architectural layer [8]. To do so, it is paramount that the robot can

semantically understand its surrounding environment. Thus, adding another

2

layer to the robot knowledge, allowing a better understanding of the relations

and intrinsic concepts of the world, which are naturally inferred by humans.

Semantic data has been explored on several fields of robotics and artificial

intelligence, such as navigation [9], [10], knowledge representation [11]–[14]

and computer vision [15]–[17], however just a small fraction of them use it to

perform mental simulations [18]–[20].

Mental simulation is important not only for remembering past actions and

planning the future ones but also “learning from imagination” [21]. Initially,

humans learn by experience. Indeed, our first learning experiences as a toddler

come from interacting with the environment and with ourselves and observing

the outcome. After acquiring enough experience, we can simulate such

experiences in our mind, and learn by thinking about those experiences,

reducing the need to always have a propitious environment, thus accelerating

the learning process. Such a skill can and should also be incorporated into

robotic systems. In robotics, one of the fields on Artificial Intelligence (AI) is

called Reinforcement Learning (RL). RL was based on the way humans learn,

exploring the environment and receiving rewards or penalties depending on how

well the robot executed the given task. A sub-division of RL, known as Deep

Reinforcement Learning(deep-RL), combines the concepts of RL with deep

neural networks and has seen a rise in popularity on several robot applications,

such as manipulation [22], [23] and autonomous navigation [24]–[26].

This work uses semantic modeling to represent the environment and robots

themselves, enabling them to automatically generate a complete mental

simulation environment without human assistance. This simulated environment

was used to validate planned actions before executing them in the real world. It

was also used when the robot is idle (e.g., charging, or in-between missions)

3

to run RL algorithms, taking robots one step closer to full autonomy. Our major

contributions are:

• An extension of the Triplet Ontological Semantic Modeling framework

to allow representing a robot;

• A mental simulation generating algorithm that creates a simulated

environment automatically using only the information on the robot’s

database;

• A hybrid navigation method that combines a sampling-based planner

with a reinforcement learning navigation policy, enabling real-time

long-range navigation.

The rest of the paper is organized as follows. Section 2 contains an overview

of mental simulation, reinforcement learning, and planning solutions. Then, the

environment and robot modeling and the architecture used to generate an

automatic mental simulation are presented in Section 3. Furthermore, Section 4

describes two different applications for the mental simulation: training a

reinforcement learning policy and validating a plan. Section 5 presents our

simulation results, where we compare them with the current state-of-the-art

algorithms. Finally, Section 6 concludes the paper and presents research

directions for future works.

4

2. Related Work

2.1 Knowledge and Semantic Modeling

A large portion of our current surrounding environments was designed by

humans, for humans. Throughout our history, we shaped our world according to

our needs and convenience. Robots are now starting to work on those dynamic

environments and, to successfully act on our world, they should be able to

understand it in a similar fashion as we do. In other words, robots need

knowledge about their environment, task, and its design and capabilities. Such

knowledge should be structured in a way machines can understand effectively

while representing the intrinsic relationship between different individuals on a

large scale.

Several works proposed ways of incorporating knowledge into computers.

Some gathered a large amount of encyclopedic knowledge into their databases

[12], [13], [27], [28]. Also known as general knowledge graph databases, they

tried to subsume a vast spectrum of domain-agnostic knowledge. CYC [12]

tried to formalize commonsense knowledge, mostly handcrafted by knowledge

experts. As of today, it is composed of more than 10 thousand predicates and

more than 25 million assertions, mostly composed of proprietary data owned by

Cycorp, the creator of CYC. The Suggested Upper Merged Ontology (SUMO)

[13] was created by merging already publicly available knowledge bases into a

single standardized structure. At the time of its publication, SUMO had 654

terms and 2351 assertions, distributed as an open-source knowledge base.

WordNet [27] is a database of English words, mostly nouns, verbs, and

5

adjectives, connected by a small set of semantic relations. Its second version

subsumed around 200000 words. ConceptNet [28] was automatically generated

from English sentences of the Open Mind Common Sense (OMCS) corpus. It

combined simple semi-structured English sentences connecting them using

twenty specified semantic relations. The whole network had more than 300000

connected nodes.

The main drawback of general knowledge graphs is that it tries to englobe a

large variety of data from different domains, which is good for textual tasks and

contextual commonsense reasoning but lacks accuracy and granularity when

used on specific domains, such as robotics. The robotics domain needs more

detailed knowledge about the physical world, its occupants, objects, tasks and

behaviors, and the relationship between them. The Open Mind Indoor Common

Sense (OMICS) [14] knowledge base is an object-centric framework that

contains knowledge needed for robots to execute several tasks in an indoor

home or office environment. Its structure was based on the OMCS sentence

templates. The RoboEarth [11] project tried to create the World Wide Web for

robots, a distributed cloud-based platform where robots would be able to

autonomously share and reuse knowledge. The cloud database would store

sensorial and modeled data from objects (such as CAD models, point clouds,

and images) and human-readable action receipts. Each robot would have a skill

abstraction layer that would receive those action sequences and convert to

actions that can be executed by the robot hardware. OpenEASE [19] went on a

similar path by also offering a cloud solution for knowledge storage, but it also

allowed full manipulation task episodes to be stored, which could be later

queried, visualized, and analyzed. This work proposes a new semantic

knowledge framework, which is able to represent not only the environment but

6

also the robot itself. It focuses on representing knowledge in a general way so

that it can be used in a large span of applications, but also with enough

information to allow robots to simulate the environment based only on their

internal knowledge.

2.2 Mental Simulation on Humans

The mental simulation paradigm has shown constant interest from cognitive

science and neuropsychology fields [1], [6], [29], [30]. One of the pioneering

works on this field was done by Kahneman and Tversky [1], by suggesting

there were some situations when finding an answer for a problem, humans would

run a mechanism which resembled a simulation. They also affirmed that such

simulations would yield various outcomes, giving us a bias of which result was

more likely to happen. They affirmed that these simulations could be used for

predicting future events, asserting a probability of its occurrence and reasoning

about causality (i.e., whether event A led to event B). This causality principle

was then shown to affect how we do counterfactual reasoning, easily described

as “what if” scenarios, which we use to imagine different outcomes to a series

of events that have already happened. In an earlier study [31], Tversky and

Kahneman also showed that the ease of the subject to determine an outcome of

an event was greatly influenced by the availability of similar events in their

memory. Gordon [6] showed the usage of mental simulation when predicting

someone else’s behavior, intents, and beliefs, a concept also known as ‘Theory

of Mind’ [29].

Later works were more focused on which areas of the brain are activated

when performing mental simulations [30] or on which specific applications they

7

are used. Kappes et al. [32] suggested that we use it as a substitute for physical

experiences due to its easier availability. Lombrozo [21] showed that those

virtual experiences could be used as a learning tool. Hegarty [33] and Bates et

al. [34] demonstrated that mental simulation is also used when dealing with

complex physics concepts, such as mechanical reasoning (e.g., predicting which

way a gear would turn when connected with several other gears) and predicting

liquid dynamics (e.g., reasoning that water is more likely to spill when being

poured than a high viscosity liquid). Burgess [4] showed that mental simulation

and episodic memory are paramount when performing navigation. Finally,

Bergen et al. [35] showed the influence of grammatical structures when

mentally simulating a sequence of actions, while Speed et al. [36] argued that

odor has little to no influence on mental simulation, whereas visual and auditory

information plays a significantly bigger role.

2.3 Mental Simulation on Robots

Despite being thoroughly studied by cognitive science researchers, the

mental simulation concept is yet to be fully explored in Artificial Intelligence

and Robotics fields. Indeed, it only started to be applied to computational

systems a few decades ago. The first works on the field focused on the “putting

yourself on someone else’s shoes” application, where an agent would simulate

itself on another actor’s perceived state in order to infer about its feelings and

intentions. Laird [37] created a Quake bot that would try to predict its

opponent's next action by simulating itself on the opponent's pose and then

running its own algorithm. Leonardo [4] was created to assist a human operator

on its task. To do so, Leonardo would simulate itself on the human’s perceived

8

state and guess its intentions by using his own internal module. Leonardo would

then try to assist with the predicted action. Buchsbaum et al. [38] developed a

simulated character that would try to infer its counterpart’s action and imitate

it based on its own internal kinematic model.

Cassimatis et al. [39] proposed a planning architecture that combined several

different reasoning and inference algorithms by using a common knowledge

representation so a robot would be able to perform logical simulations to track

another agent. ORPHEUS [40] is a system created to aid a hunter to catch prey.

It used mental simulation to run several different plans and select the most

suitable one to be applied to the real situation. The mental simulation was

automatically generated based on the data extracted from the hunter perception.

Buche et al. [41] extended this work by adding multiple agents to the

environment and allowing online adaptation of the planned path. They also used

the same approach to let a virtual juggler predict the ball path while juggling

either alone or collaborating with other agents, being them simulated or humans.

Vicente et al. [42] used mental simulation combined with proprioceptive data to

simulate on which pose a robot hand would appear on its image and then match

this simulated result with the real camera image using Bayesian techniques.

This combined data was used to do an online update to the robot’s internal

kinematic model. KnowRob 2.0 [20] is a knowledge processing framework that

is able to perform logical reasoning using both a semantic knowledge database

and mental simulation (there called “The mind’s eye”) capable of replaying the

robot’s past experiences to explore new outcomes. This work, however,

focused mainly on manipulation tasks. Vanderelst et al. [43] developed an

ethical robot that used mental simulation to validate its several planned

behavioral alternatives according to Asimov’s laws of robotics. The robot would

9

then choose the action which complied with those laws. Except for [20], [40],

[41], most of the cited works focused on a specific application, where the

simulation environment was tailored by domain experts. We reckon such

cognitive skills should be an intrinsic skill for robotic systems, so they can

achieve full autonomy. This work proposes a mental simulation automatic

generation algorithm, using only the robot's internal knowledge without the need

for human aid. This simulation was then used to perform reinforcement learning

and to validate motion plans.

2.4 Reinforcement Learning

New evidence from neuroscience and psychology studies suggest that

animals might replay navigation sequences when sleeping, discovering new

routes, and also consolidating the memorized ones [44], [45]. We envision that

the next generation of robots should be able to use their idle time to constantly

learn new skills. One of the ways of achieving such autonomous learning

capabilities is by using Reinforcement Learning approaches. Reinforcement

Learning (RL) algorithms try to map a set of sensory inputs to actions by

formulating this task as a Partially Observable Markov Decision Process

(POMDP) [46]. Deep RL uses deep neural networks (DNN) to approximate such

mapping.

Mnih et al. [47] created a DNN named Deep-Q Network (DQN) to

approximate the Q-value estimation for a value-based RL approach. Shah et al.

[25] developed a novel end-to-end architecture, which learned how to

interpret natural language instructions and a semantic segmented RGB-D image

to navigate in places without any map or current position information. They used

10

a combination of Convolution Neural Networks (CNN), a bi-directional Gated

Recurrent Unit (GRU) weighted by an attention mechanism, and a DQN, which

learned a policy that converts the input data into discrete move left front and

right control actions. Due to only being able to output discrete actions, DQN is

not suitable for several robotic applications, which are inherently continuous.

Lillicrap et al. [48] proposed an actor-critic RL approach called Deep

Deterministic Policy Gradients (DDPG), which used separated DNNs for action

generation and Q-value approximation. This architecture was able to perform

continuous actions. Tai et al. [24] proposed an end-to-end architecture, which

takes as input sparse 10-dimensional laser range readings and a relative goal

coordinate, and converts it to a continuous velocity output. They extended the

DDPG algorithm to an asynchronous version, which was shown to collect four

times more samples than the original synchronous version. DDPG, however,

suffered from value over-estimation and unstable learning. Fujimoto et al. [49]

proposed the Twin Delayed Deep Deterministic Policy Gradients (TD3), which

learned two critic networks but only used the smallest value between them when

predicting future rewards. They also delayed the actor training step to improve

overall learning stability. Kahn et al. [26] developed a novel model, called

Generalized Computation Graphs (GCG) for reinforcement learning, to generate

a hybrid model-free, model-based algorithms for robot navigation. The key

aspect of this GCG was the use of a multiplicative integration Long Short Term

Memory (LSTM), which would encode the next H actions and its predicted

rewards. By carefully choosing the output values of the LTSM (i.e., the

expected reward data shape), the GCG could either behave as a value-based

model-free algorithm or as a model-based algorithm. Long et al. [50] applied

RL paradigms to the multi-robot field. They used a centralized learning,

11

decentralized execution approach, where each robot would execute its next

action based on individual readings, however, a single shared policy would be

trained by the experience collected by every robot simultaneously.

2.5 Motion Planning

Motion planning can be defined as finding a valid motion path given a goal

point, a sensorial input, and a list of constraints, such as not colliding with

obstacles. Planners are usually compared based on their computational

efficiency and scalability and on their ability to find an optimal solution in finite

time [51]. Motion planners can be roughly divided as cell decomposition

methods (CDM), potential field methods (PFM), and sampling-based methods

(SBM).

CDMs divide the environment’s free space into small cells and find a

sequence of adjacent cells that connect the current position to the goal while

avoiding occupied spaces. They suffer, however, from several issues such as

limited granularity, combinatorial explosion, and generating infeasible solutions

[52]. In PFMs, every goal is modeled as an attractive force, while obstacles are

repulsive ones. To get to the goal, the robot follows the gradient direction

generated by the combination of those fields. Nevertheless, they are susceptible

to converge into local minima, which would trap the robot midway [52]. SBMs,

on the other hand, have attracted considerable attention due to its scalability

and probabilistic completeness, namely, if the number of samples converges to

infinity, the probability of finding the optimal path converges to 1. Probabilistic

roadmaps (PRM) and rapidly-exploring random trees (RRT), two of the most

notable PRMs [53], sample points in a similar way, but differ largely on how

12

they connect those points. PRM [54] maintains several graph expansions

simultaneously, having a good performance on high-dimensional spaces. RRT

[55], on the other hand, rapidly explores a single graph, being more suitable to

smaller environments. Despite being probabilistic complete algorithms,

Karaman et al. [56] showed that most of the time, both algorithms returned

non-optimal solutions. The authors then introduced the asymptotically optimal

versions of each method, PRM* and RRT*, respectively. Nonetheless, PRM* and

RRT* provided no theoretical guarantees of their optimality [57] and had a

slower convergence compared to their original forms. Faust et al. [58] tried to

solve the shortcomings of SBMs and RL algorithms by combining both into a

hybrid approach. A similar method was used in this work.

13

3. Automatic Mental Simulation

In this section, we describe in detail the environment modeling and the mental

simulation generation algorithm.

3.1 Triplet Ontologic Semantic Modeling

Researches on the cognitive sciences and neuroscience fields [4], [59]

showed that the human brain has an outstanding ability to generate, maintain

and update spatial maps of known environments, also called the brain “GPS.”

Humans rely heavily on relational information instead of precise measurements,

allowing our brain to efficiently map even large environments. This scalability

and data efficiency remains unparalleled when compared to the latest

technologies. Robots still need to be fed with memory inefficient but high-

resolution metric data to localize themselves and navigate through known

environments. Several different map definitions have been used by the robotics

community, such as shown in Figure 1. All those maps, however, can share some

common data between them, wasting memory space and hindering the robot’s

long-term capabilities.

The Triplet Ontologic Semantic Modeling (TOSM) [60] was created to

change the way data is stored and used by robots. TOSM can be divided into

three main pillars, as shown in Figure 1. The explicit model is used to describe

any data that can be perceived by the robot sensors, such as shape, color, pose,

and size. Most of the data used by current robotic systems can be englobed on

this model. The implicit model, on the other hand, contains any intrinsic

14

information that cant be obtained directly from sensors and should be inferred

using the robot’s current knowledge. It can range from physical properties such

as mass and friction coefficients, to relational semantic data, that describes

objects/places relative position. It can also store encyclopedic knowledge, such

as “an automatic door opens if there is a subject in front of it.” Finally, the

symbolic model contains a human-like definition for the elements, namely

symbols, names, descriptions, and identification numbers.

In order to store the TOSM-encoded data using a computer-readable format,

both the robot and the environment data were stored into separated Ontology

Web Language (OWL) files. OWL was chosen due to being a well-defined

language vastly used by the community and with several tools and applications

openly available. We used the Protégé framework [61] to manipulate and visualize

OWL files.

Figure 1 - TOSM description

15

3.2 Environment Description

The environment can be divided into places and objects. Places can be

anything from a building to a single floor or even a small room. Their explicit

model contains their boundary points, while the implicit model subsumes the

relational data, i.e., which other places it is connected to and which places it is

inside of. The implicit data also stores the complexity of the place, a number

between 0 and 1, which represents the proportion of the area which is occupied.

Regarding objects, the explicit model contains the object’s size, pose, color,

and shape. The implicit model stores the object’s mass and material, and the

relational spatial data, such as “ in front of,” “next to,” and “inside of.” The

symbolic data is the same for places and for objects, containing the

place/object name and an identification number.

In this work, we extended the TOSM framework to also encode a complete

robot definition.

3.3 Robot Description

In this work, we modeled the differential robot shown in Figure 2. The robot

is equipped with a stereo camera and a laser range finder. The modeling

proposed in the section, though, can be applied to several different types of

robots.

A modular approach was used to describe robots. A robot can be divided into

four main components: structural parts, joints, wheels, and sensors. A robot can

contain none, one, or multiple instances of any of those parts. Each part was

modeled using TOSM encoding (i.e. each part has an explicit, implicit, and

16

symbolic model). The explicit data is virtually the same across all robot parts,

while the symbol data contains the name and an identification number. The

implicit model, however, is unique for each category. Structural parts need to

encode their weight and material information. The wheel representation extends

it to also store whether it is an active or a passive wheel. Joints, on the other

hand, store which two parts they are connected to. Finally, sensors have

different implicit data depending on their type. Cameras can be represented by

their resolution, frames per second, field of view, and, in the case of RGB-D

cameras, by their minimum and maximum ranges. A laser range finder is

described by its range, view angle, number of samples, and resolution. The OWL

datagraph of the aforementioned differential robot can be seen in Figure 3, and

the simulated robot generated through this data is shown in Figure 2.

Figure 2 - Differential robot used in this work

17

3.4 Generating the Mental Simulation

One of the key issues when implementing mental simulation algorithms is the

need of domain experts to model the simulation according to the robot’s real

environment. This task becomes unfeasible for robots operating in large

dynamic environments. In order to improve the robot’s autonomous capabilities

and to remove the need for domain experts, we developed a middle-ware,

named simulation parser, capable of generating a simulation environment using

only the data stored in the robot’s database.

Whenever the robot receives a mission, it performs a query on the complete

database, generating a subset containing only the environment data relevant to

the current mission. This newly generated subset is called the on-demand

database. Through this system, we can reduce the memory requirements on the

Figure 3 - Robot OWL datagraph

18

robot by storing the complete database in the cloud and providing to the robot

only the data relevant to the current mission. The simulation parser then

consumes the data in the on-demand database and generates the needed files

to generate a corresponding simulated environment. The data-flow can be seen

in Figure 4. Two different files are generated by the parser. The first one is a

Simulation Description Format (SDF) file, which is consumed by the Gazebo

Simulator to generate the simulated environment. The second file is a Universal

Robot Description File (URDF), which is used by both the Gazebo Simulator and

the Robot Operating System (ROS) to generate and control the simulated robot.

Whenever the robot needs to use the mental simulation, both files are re-

generated, assuring that the simulation will be constantly updated whenever the

robot perceives a change in the real environment and updates its database.

To ensure the simulation similarity and consistency with the real world, we

used a library containing 3D models for several common objects, such as doors,

tables, and chairs. Nonetheless, when exploring new environments, the robot is

Figure 4 - Mental simulation building steps and data-flow

19

bound to encounter objects whose there is no corresponding 3D model. Hence,

to improve the algorithm robustness, whenever the robot needs to simulate an

object of which it has no 3D model available, a placeholder is generated instead,

using the color and shape information stored in the on-demand database. A

comparison between an object of which there is a 3D mesh available and an

object of which a placeholder was generated be seen in Figure 5. The 3D model

database contains a mesh for a steel door, which was used in the simulation. On

the other hand, there is no available 3D model for a beverage vending machine,

hence the mental simulation building algorithm automatically generates a red

block placeholder, based on the color and shape perceived by the robot.

Beetz et al. [20] used a semantic modeling framework combined with mental

Figure 5 - Environment generated by the mental simulation building algorithm

20

simulation to validate planned actions. However, their focus was on manipulation

tasks, building only small simulations with dynamic objects. The number of

available objects was limited to household items, of which there were 3D

meshes available. Our proposed approach allows the robot to simulate

previously unknown objects by combining the perceived shape, size, and color

information into a placeholder object. Hence, allowing us to perform large scale

simulations on unknown environments, while Beetz et al. approach was limited

to small indoor environments.

21

4. Mental Simulation Application

In this section, we introduce two different mental simulation applications,

namely, reinforcement learning and motion planning.

4.1 Reinforcement Learning

Reinforcement learning (RL) is inspired by one of the first learning methods

used by humans, namely learning by experience. RL works by letting an agent

explore a given environment and giving or removing rewards based on how well

the agent performed the desired task. RL has shown promising results in board

games [62] and computer games [63], mostly due to their controlled

environment and clear objectives. Robots, on the other hand, act on the physical

world, making it difficult to generate a large variety of experiences without

putting either the robot or their surroundings at risk. One solution for this issue

is to train a simulated robot and then transfer its knowledge to the real robot

[24]. In this work, we used the mental simulation as a training environment for

an autonomous navigation reinforcement learning algorithm.

A navigation problem can be formulated as a Partially Observable Markov

Decision Process (POMDP)[46] (𝒮, 𝒜, 𝒪, R(s, a), T(s’|s, a) , P(o|s)). 𝒮, 𝒜 and

𝒪 are the state, action and observation spaces, respectively, while R(s, a) is a

function which receives the current state and action and returns a corresponding

reward. Finally, T(s’|s, a) and P(o|s) are the transition and observation

probabilities, respectively. RL involves finding a policy π(o) → a, o ∈ 𝒪, a ∈ 𝒜,

which maps the current observation into an action that maximizes the sum of

22

the expected future rewards. To simplify this notation, we will refer to this

policy as π(a|s), i.e., a function that maps a state to an action. RL methods can

be divided into model-based and model-free value-based approaches. Model-

based approaches use a predictive function that receives the current state and

a sequence of actions and outputs the sum of the expected rewards. The policy

then selects the action sequence that maximizes the expected rewards based

on the predicted states. To generate such outputs, model-based algorithms

need to understand its environment and learn both the reward function R and

the transition probability function T. Model-free algorithms, on the other hand,

directly learn either a policy function or a value function (or both in the case of

actor-critic networks). A value function receives the current state and a given

action and outputs the sum of expected rewards. Generally, model-based

approaches are sample-efficient, while the model-free ones are better at

learning high-dimensional, complex tasks.

4.1.1 Problem Definition

Our navigation task consists of a robot that receives a laser scan and a goal

relative position and outputs a velocity command. Similarly to [24], instead of

using the raw laser scan data, we used 23 equally spaced discrete laser readings.

Using incomplete data forces the robot to better generalize to faulty input

information, increasing its robustness when encountering real-world scenarios

[24]. We also added Gaussian errors to input and output data to further mimic

real-world conditions. The goal relative position was encoded on the (r, θ)

format. Moreover, the robot should output two distinct commands: the desired

linear and angular velocities.

23

The environment reward is one of the key hyperparameters when defining

RL algorithms. It is used to evaluate a given action and to generate gradients

that steer the policy into pursuing better rewards. The navigation problem

described in this work used the following rewards:

where rcompletion, rtime, rcloser and rcollision are positive real numbers.

4.1.2 Q-Learning

A value function V(s) is a function that gives the expected return when

starting from the state s. The value function is defined using a self-consistency

equation called the Bellman equation [64]. The Bellman equation states that the

value of an input can be modeled as the immediate reward of this initial choice,

plus a weighted sum of the resulting state value. The on-policy and optimal

value functions can be defined as

where π is the policy, a is an action, s is the current state, s’ is the next state,

r(s, a) is the reward function and γ ~ [0,1]. Similarly, we can define the action-

value function, also known as Q function. The Q function Q(s, a) returns the

r(s, a) = {

rcompletion − t ∗ rtime, when arriving at the goal at time t,

rcloser, if getting closer to the goal,
−rcollision, if too close to the obstacle,

 Eq. 1

Vπ(s) = E
a~π

[r(s, a) + γVπ(s′)], Eq. 2

V∗(s) = max
a

 r(s, a) + γV∗(s′), Eq. 3

24

expected value of being on the state s and performing the action a. The on-

policy and the optimal action-value functions can also be modeled by the

Bellman equation as follows:

Q-Learning approaches try to generate a Q(s, a) function that approximates the

optimal action-value function shown on Eq. 5, thus called the target function.

An example of Q-Learning algorithm is the DQN [47] which uses a DNN to

approximate Q∗(s, a).

4.1.3 Policy Gradients

Policy gradient algorithms try to directly optimize the policy πθ(a|s), where

θ are some learnable parameters of π. To do so, an objective function J(πθ) is

used to quantify the policy’s performance. The policy can then be optimized

through gradient ascent, as follows:

where 𝛼 is the learning rate and 𝛻𝜃 𝐽(𝜋𝜃) is called the policy gradient. Due to

explicitly learning the desired function, i.e., the policy, policy gradient

approaches tend to be more stable when compared to Q-Learning algorithms,

Qπ(s, a) = r(s, a) + γ E
a′~π

[Qπ(s′, a′)], Eq. 4

Q∗(s, a) = r(s, a) + γ max
a′

Q∗(s′, a′). Eq. 5

θt+1 = θt + α ∇θ J(πθ)|θt
 Eq. 6

25

which indirectly improves the policy by learning an action-value function. Q-

Learning methods, though, can be performed off-policy, which means that they

can efficiently reuse past data, increasing their sample-efficiency.

4.1.4 Actor-Critics

Actor-critic methods are a combination of policy and value learning, that

aims to achieve both policy gradient algorithms stability and Q-learning sample

efficiency. The main idea is to use two different networks: one to generate an

action based on a state, and another one to evaluate this action by approximating

a state value or action-state value function.

The actor receives the observation as input and tries to generate the best

action. In other words, it learns how to approximate the optimal policy to control

the agent’s behavior. Its training is done using the policy gradient method by

carefully choosing an objective function that is related to the critic’s evaluation.

The critic evaluates the taken action by computing a value function. This

value function learns how to predict either the state or the action-state value

function by using either Eq. 3 or Eq. 5 as a target function and minimizing the

minimum square error by performing the gradient descent algorithm.

Using this method, the critic learns to better evaluate how good or how bad

is to take a given action on a given state. In contrast, the actor uses this

evaluation to improve its action generation aiming to maximize future rewards.

The result is that each network learns how to perform a task more efficiently

when compared to when trained separately.

26

4.1.5 Deep Deterministic Policy Gradients

The deep deterministic policy gradients (DDPG) was originally proposed by

Lillicrap et al. [48] and used one DNN as a policy approximator (actor) and

another as an action-state value function estimator (critic). Its original

motivation was to extend DQN capabilities to environments with continuous

action spaces. When taking an optimal action, a DQN agent would compute an

action 𝑎 = 𝑚𝑎𝑥
𝑎

𝑄∗(𝑠, 𝑎) which is trivial on discrete action spaces where there

are a finite number of possible actions. However, on continuous spaces, directly

finding 𝑚𝑎𝑥
𝑎

𝑄∗(𝑠, 𝑎) becomes a non-trivial optimization problem, which would

need to exhaustively search actions on a continuous space on each iteration. If

the policy is deterministic, however, 𝑚𝑎𝑥
𝑎

𝑄∗(𝑠, 𝑎) can be approximated to

𝑚𝑎𝑥
𝑎

𝑄∗(𝑠, 𝑎) ≈ 𝑄∗(𝑠, 𝜋𝜃(𝑠)) allowing us to adapt the target from Eq. 5 to

Then, we can sample a set 𝒟 of independent experience tuples (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑)

where 𝑑 ∈ [0,1] is a boolean which states whether or not it was a terminal

experience. The loss function for the critic network then becomes the mean-

squared Bellman error (MSBE)

which we use to perform gradient descent

𝑄∗(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾𝑄∗(𝑠′, 𝜋𝜃(𝑠)). Eq. 7

𝐿(𝜙, 𝒟) = 𝐸
(𝑠,𝑎,𝑟,𝑠′,𝑑)~ 𝒟

[(𝑄𝜙(𝑠, 𝑎) − (𝑟 + 𝛾(1 − 𝑑)𝑄𝜙𝑡𝑎𝑟𝑔
(𝑠′, 𝜋𝜃𝑡𝑎𝑟𝑔

(𝑠′))
2

], Eq. 8

27

where 𝑄𝜙𝑡𝑎𝑟𝑔
 and 𝜋𝜃𝑡𝑎𝑟𝑔

 are the target critic and target policy networks, and 𝛼

is the learning rate hyperparameter. When minimizing the MSBE, we are trying

to make the action-state value function as close as possible to the target. If this

target uses the same network as the one being learned, the MSBE becomes

unstable, as we would be using a moving target for learning. To solve this issue,

Lillicrap et al. proposed a soft-updated target network, which would lag behind

the trained networks to provide a more stable target. The target weight updates

should happen every iteration using the Polyak averaging

where 𝜏 ~ [0,1].

To train the policy network 𝜋𝜃(𝑠) we need to define an objective function

𝐽(𝜋𝜃). The authors of [48] chose to use a function that tries to maximize 𝑄𝜙(𝑠, 𝑎).

Hence, we can define the objective function as

which we use to perform gradient ascent

𝜙 ← 𝜙 − 𝛼𝛻𝜙𝐿(𝜙, 𝒟) Eq. 9

𝜙𝑡𝑎𝑟𝑔 ← 𝜏𝜙𝑡𝑎𝑟𝑔 + (1 − 𝜏)𝜙, Eq. 10

𝜃𝑡𝑎𝑟𝑔 ← 𝜏𝜃𝑡𝑎𝑟𝑔 + (1 − 𝜏)𝜃, Eq. 11

𝐽(𝜋𝜃) = 𝑚𝑎𝑥
𝜃

𝐸
𝑠~𝒟

[𝑄𝜙(𝑠, 𝜋𝑡ℎ𝑒𝑡𝑎(𝑠))], Eq. 12

𝜃 ← 𝜃 + 𝛼𝛻𝜃𝐽(𝜋𝜃). Eq. 13

28

Finally, in order to encourage exploration, every action taken during training

has a random normal error 𝜖 ~ 𝒩(0, σ) added to it.

4.1.6 Twin Delayed DDPG

Despite its overall good performance, DDPG has a common failure point of

overestimating the Q-values, which is then exploited by the policy network.

This usually leads to unstable learning or the agent overfitting to a sub-optimal

policy. Fujimoto et al. [49] proposed the twin delayed DDPG (TD3) to address

those issues. TD3 differs from the original DDPG on three main points: target

policy smoothing, clipped double Q-learning, and delayed policy updates.

Target policy smoothing adds a clipped random normal error to the target

policy

which works as a regularizer, avoiding the target function mistakenly exploiting

sub-optimal actions. Clipped double Q-learning use two different DNNs to

approximate 𝑄𝜙1 and 𝑄𝜙2. Both functions use the same target on their loss

functions by choosing whichever network outputs the smallest values

𝑎′ = 𝑐𝑙𝑖𝑝 (𝜋𝜃𝑡𝑎𝑟𝑔
(𝑠′) + 𝑐𝑙𝑖𝑝(𝜖, −𝜖𝑚𝑎𝑥 , 𝜖𝑚𝑎𝑥), 𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥) , 𝜖 ~ 𝒩(0, σ), Eq. 14

𝑦(𝑟, 𝑠′, 𝑑) = 𝑟 + 𝛾(1 − 𝑑)𝑚𝑖𝑛
𝑖=1,2

 𝑄𝜙𝑖𝑡𝑎𝑟𝑔
(𝑠′, 𝑎′), Eq. 15

𝐿(𝜙1, 𝒟) = 𝐸
(𝑠,𝑎,𝑟,𝑠′,𝑑)~ 𝒟

[(𝑄𝜙1(𝑠, 𝑎) − 𝑦(𝑟, 𝑠′, 𝑑))
2

], Eq. 16

29

This upper bounds the target, avoiding its overestimation thus increasing the

learning stability. Finally, the policy objective function was then adapted to

maximize 𝑄𝜙1, but updated only every 𝑛 critic updates, allowing a more stable

critic value to be used as an objective function. Our work modified the policy

learning by adding a custom objective focused on navigation tasks

where 𝛽1 and 𝛽2 are hyperparameters and 𝜋𝜃(𝑠)[0] and 𝜋𝜃(𝑠)[1] are the linear

and angular velocities, respectively. By trying to maximize this objective

function, we encourage the robot to increase its linear velocity and decrease

the angular one, which may lead to a more smooth behavior. Our TD3-based

architecture is shown in Figure 6, and the training algorithm shown in Algorithm

1. We used a sigmoid function to encode the linear speed between [0,1] and the

hyperbolic tangent function to limit the angular speed between [−1,1]. Both

values are multiplied by constant weights, 𝑣 = 0.8𝑚/𝑠 , 𝜔 = 0.5 𝑟𝑎𝑑/𝑠, before

being sent to the robot as a velocity command.

𝐿(𝜙2, 𝒟) = 𝐸
(𝑠,𝑎,𝑟,𝑠′,𝑑)~ 𝒟

[(𝑄𝜙2(𝑠, 𝑎) − 𝑦(𝑟, 𝑠′, 𝑑))
2

]. Eq. 17

𝐽(𝜋𝜃) = 𝑚𝑎
𝜃

𝑥 𝐸
𝑠~𝒟

[𝑄𝜙1(𝑠, 𝜋𝜃(𝑠))] − 𝛽1(𝜋𝜃(𝑠)[0] − 1)2 − 𝛽2(𝜋𝜃(𝑠)[1])2, Eq. 18

30

Algorithm

1

TD3 training

1 𝐶𝑟𝑒𝑎𝑡𝑒 𝜋𝜃(𝑠), 𝑄𝜙1(𝑠, 𝜋𝜃(𝑠)) 𝑎𝑛𝑑 𝑄𝜙2(𝑠, 𝜋𝜃(𝑠))

2 𝐶𝑜𝑝𝑦 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 𝜃𝑡𝑎𝑟𝑔 ← 𝜃, 𝜙1𝑡𝑎𝑟𝑔
← 𝜙1, 𝜙2𝑡𝑎𝑟𝑔

← 𝜙2

3 𝒍𝒐𝒐𝒑 𝑢𝑛𝑡𝑖𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠

4 𝐺𝑒𝑡 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑠 𝑎𝑛𝑑 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑎 = 𝑐𝑙𝑖𝑝(𝜋𝜃(𝑠) + 𝜖, 𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥), 𝜖 ~ 𝒩(0, 𝜎1)

5 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 𝑎 𝑎𝑛𝑑 𝑔𝑒𝑡 𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒 𝑠′, 𝑡ℎ𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑟 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑑𝑜𝑛𝑒 𝑠𝑖𝑔𝑛𝑎𝑙 𝑑

6 𝑆𝑡𝑜𝑟𝑒 (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑) 𝑖𝑛𝑡𝑜 𝑡ℎ𝑒 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 𝑏𝑢𝑓𝑓𝑒𝑟 ℰℬ

7 𝑰𝒇 𝑑 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 1, 𝒕𝒉𝒆𝒏 𝑟𝑒𝑠𝑒𝑡 𝑡ℎ𝑒 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡

8 𝑆𝑎𝑚𝑝𝑙𝑒 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑏𝑎𝑡𝑐ℎ 𝒟 = {(𝑠, 𝑎, 𝑟, 𝑠′, 𝑑)}𝑛 𝑓𝑟𝑜𝑚 ℰℬ

9 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑎𝑐𝑡𝑖𝑜𝑛𝑠

 𝑎′ = 𝑐𝑙𝑖𝑝 (𝜋𝜃𝑡𝑎𝑟𝑔
(𝑠′) + 𝑐𝑙𝑖𝑝(𝜖, −𝜖𝑚𝑎𝑥 , 𝜖𝑚𝑎𝑥), 𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥) , 𝜖 ~ 𝒩(0, σ2)

10 𝐺𝑒𝑡 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 𝑡𝑎𝑟𝑔𝑒𝑡

 𝑦(𝑟, 𝑠′, 𝑑) = 𝑟 + 𝛾(1 − 𝑑)𝑚𝑖𝑛
𝑖=1,2

 𝑄𝜙𝑖𝑡𝑎𝑟𝑔
(𝑠′, 𝑎′)

11 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑐𝑟𝑖𝑡𝑖𝑐 𝑙𝑜𝑠𝑠

 𝐿(𝜙i, 𝒟) =
1

𝑛
∑ (𝑄𝜙i(𝑠, 𝑎) − 𝑦(𝑟, 𝑠′, 𝑑))

2
, 𝑖 = 1,2(𝑠,𝑎,𝑟,𝑠′,𝑑)~ 𝒟

12 𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑑𝑒𝑠𝑐𝑒𝑛𝑡

 𝜙𝑖 ← 𝜙𝑖 − 𝛼∇𝜙𝑖𝐿(𝜙𝑖, 𝒟), 𝑖 = 1,2

13 𝑰𝒇 𝑝𝑜𝑙𝑖𝑐𝑦𝑈𝑝𝑑𝑎𝑡𝑒, 𝒕𝒉𝒆𝒏

14 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

 𝐽(𝜋𝜃) =
1

n
∑ 𝑄𝜙1(𝑠, 𝜋𝜃(𝑠))𝑠~𝒟 − 𝛽1(𝜋𝜃(𝑠)[0] − 1) − 𝛽2𝜋𝜃(𝑠)[1]

15 𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑎𝑠𝑐𝑒𝑛𝑡

 𝜃 ← 𝜃 + 𝛼∇𝜃𝐽(𝜋𝜃)

16 𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑠

 𝜃𝑡𝑎𝑟𝑔 ← 𝜏𝜃𝑡𝑎𝑟𝑔 + (1 − 𝜏)𝜃

 𝜙𝑖𝑡𝑎𝑟𝑔
← 𝜏𝜙𝑖𝑡𝑎𝑟𝑔

+ (1 − τ)ϕi, 𝑖 = 1,2

17 𝑬𝒏𝒅 𝒊𝒇

18 𝑬𝒏𝒅 𝒍𝒐𝒐𝒑

31

4.2 Motion Planning

Despite the constant development of new RL technologies, they still have

issues when dealing with long horizon rewards. The 𝛾 hyperparameter on Eq.

15 weights how important future rewards are when compared to immediate ones.

The work done by Berner et al. [63] was able to use a 12 minutes reward

horizon (𝛾 = 0.9998), but further increasing of this horizon gave diminishing

Figure 6 - TD3 architecture for autonomous navigation

32

returns. Navigation tasks on large-scale environments can take from several

minutes to hours, which increases the difficulty of learning how advantageous

an action was when its result comes several minutes in the future. Hence, in

this work, we used a hybrid structure that combines a sampling-based planner

with an RL policy, an approach which has already shown good results on long-

term navigation [58]. We use the mental simulation environment to validate the

feasibility of a motion plan before its execution in the real world. Such ability

allows robots to test their plans on a simulation generated using its current

knowledge, allowing them to verify a plan safety and feasibility without the risk

of damaging itself or its surrounding environment.

4.2.1 Waypoint Generator

The waypoint generator receives a sequence of goal points in a large-scale

environment and the robot’s current position. It then queries the on-demand

database for the local metric map. We adapted the PRM algorithm proposed by

[54] to the mobile robot 2D navigation domain. It starts by generating 𝑛 random

sample points 𝒩𝑖 on the metric map re-sampling any point outside of the map

free space 𝒞𝑓𝑟𝑒𝑒 until 𝑛 samples are successfully generated. Then, for each

sample 𝒩𝑖, 𝑘 valid edges are generating connecting 𝒩𝑖 to its nearest neighbors.

An edge ℰ(𝒩𝑖, 𝒩𝑗) is considered valid if 𝒩𝑖 and 𝒩𝑗 can be connected by a

straight line completely inside 𝒞𝑓𝑟𝑒𝑒 while also being smaller than the maximum

distance threshold 𝑑𝑚𝑎𝑥. After generating all the edges, any sample that is not

connected to any other node is re-sampled, and its edges are generated. This

whole process depends solely on the 2D metric map, and can be performed off-

line (when downloading the on-demand database) or whenever the robot has

33

available processing power. After receiving a goal point 𝒩𝑔 and an initial

position 𝒩𝑠, the algorithm adds both to the PRM graph, connecting each to their

𝑘 nearest neighbors. Finally, it finds the list of waypoints that are part of the

shortest path between 𝒩𝑠 and 𝒩𝑔 using the Dijkstra’s Algorithm [65]. This list

of waypoints is then sent to the RL policy one-by-one, by sending the next

waypoint whenever the robot is close enough to the current goal.

4.2.2 Hybrid PRM-RL Planner

This hybrid PRM-RL approach can be seen as a Global-Local planning

scheme, where the PRM algorithm is responsible for generating a sparse set of

goals based on the global view, while the RL algorithm should use the local data

to react to dynamic changes in the environment while also following the goals

set by the PRM block. The overall planning architecture can be seen in Figure

7.

After receiving a goal point, the hybrid planner sends the current robot

position and the goal point to the PRM module. The PRM module generates a

sequence of valid waypoints and returns it to the planner. The waypoint handler

sub-module loop through this sequence, sending the waypoints one by one to

the navigation policy. Every time a new waypoint is sent, a 15 seconds timer is

started. If the navigation policy cannot reach the waypoint within this time, the

hybrid planner performs replannning using the robot’s new current position. The

navigation policy uses only the actor-network when performing online actions,

speeding up the process. After arriving at the waypoint, the navigation policy

34

sends a completion signal back to the hybrid planner, stopping the timer and

requesting the next waypoint. After the robot arrives at the final goal, the hybrid

planner emits a mission completed signal.

Figure 7 - Hybrid Planner Structure

35

5. Experiments and Discussion

In this section, we evaluate the performance of the proposed hybrid

navigation method.

5.1 Number of Samples

The number of samples 𝑛 is one of the key parameters of the PRM algorithm.

Too few and you might get a disconnected graph, which would fail to find a valid

path requiring the graph to be re-generated. Too many and the algorithm’s

exponential nature makes the process time-inefficient. We conducted

experiments to investigate the influence of the number of samples on the

algorithm’s performance. We used nine different metric maps from two different

environments: the 1st floor of the KDJ Convention Center and the 7th floor of the

Corporation Collaboration Center from Sungkyunkwan University as shown in

Figure 8. Table 1 shows each map size information. We used each place’s grid

map width and height to calculate the overall map size. To calculate the free

space ratio, we divided the number of free pixels by the total number of pixels

in the grid map image. Finally, to generate the free space area, we multiplied

the map’s total size by the free space ratio.

36

Table 1 - Map Information

Place Name Place Total Area

(m2)

Free Space

Ratio

Free Space Area

(m2)

KDJ Convention Center

1st floor 39759.4 0.123 4890.41

corridor 1 13632.0 0.258 3517.06

corridor 2 4672.0 0.391 1826.75

corridor 3 3124.0 0.271 846.60

Corporate Collaboration Center 7th floor

corridor 1 350.0 0.160 56.01

corridor 2 528.0 0.277 146.42

corridor 3 157.25 0.513 80.70

corridor 4 200.0 0.275 55.09

corridor 5 423.0 0.212 89.75

Figure 8 - Mapped Environments. The mapped area is shown in red.

37

We then heuristically chose a set of the number of samples 𝑛 =

{50, 100, 200, 300, 400, 500} , and ran the graph generation and pathfinding

algorithm 50 times for each value of 𝑛 on each map. Figure 9 shows the

influence of the number of samples to four performance measurements: the time

taken to build the PRM graph; the time taken to find a valid path from 𝒩𝑠 to 𝒩𝑔;

the length of such path; and whether or not the path could be found. The values

shown in Figure 9 are averaged across the 50 different tries. We can easily

notice that while the PRM building time grew quadratically with the number of

samples, the path search time grew linearly. Because in our approach we can

generate those graphs off-line when downloading the map, the effect of the

Figure 9 - PRM performance based on the number of samples (x-axis). In the

graph labels, “cc” stands for Convention Center, “7th” for the 7th floor of the

Corporate Collaboration Center and “c_i” for the corridor_i.

38

graph build time on the robot’s performance can be mitigated. Interestingly,

smaller places have shown a higher path search time for the same number of

samples when compared to larger places. This is due to the nature of the

Dijkstra’s algorithm, where if many points are close to each other, the number

of valid paths to the goal rises, increasing the path searching time. Moreover,

for each map, there is a minimum number of nodes so that the path can be

successfully found. In a real application, whenever a path cannot be found, the

graph should be re-generated, leading to slowdowns or even deadlocks. This

is not a desirable condition, showing that an optimal number of samples is

necessary. Finally, the number of nodes did not seem to interfere with the

overall path length.

These findings motivated us to find optimal 𝑛 values based on the

environment free space size. Thus, we performed a linear regression while

optimizing two constraints: the path search time should be no longer than 15ms,

and the success rate should be above 90%. Such optimization yield the following

equation:

where 𝑐𝑒𝑖𝑙 is the rounding up operation. We then used Eq. 19 to calculate

the optimal number of samples 𝑛∗ for each map. After re-running the tests 50

more times using the corresponding 𝑛∗ values, we obtained the results shown

in Table 2. Using the proposed 𝑛∗ values, both constraints were satisfied on

every map.

Faust et al. [58] used fixed densities of 0.1x, 0.2x, and 0.4x, while we used

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 = 𝑐𝑒𝑖𝑙(0.05 ∗ 𝐹𝑟𝑒𝑒 𝑆𝑝𝑎𝑐𝑒 𝐴𝑟𝑒𝑎 + 84), Eq. 19

39

the regressed formula shown in Eq. 19. For smaller maps, our approach had a

higher number of nodes on average but a way lower amount of nodes on bigger

maps. Faust et al. had success rates of 32%, 36%, and 50%, respectively, while

our approach had a 90% success rate on executing the generated paths. It

should be noted that Faust et al. maps were more complex than the ones used

in our experiments. Faust et al. also did not perform edge collision checks to

allow faster PRM graph generation. Instead, they validated the edges using a

probability distribution of whether the RL algorithm would be able to follow such

edge. This approach had a trade-off between lower success rates and lower

graph construction times. We generated the PRM graph only when receiving the

map, allowing us to check edge collision and generate safer paths, while keeping

the real-timeness of the hybrid planner.

5.2 Loss Function Regularizer

To evaluate the influence of the regularization terms 𝛽1 and 𝛽2 from Eq. 18,

we trained the robot using three different values for both regularizers: 𝛽1 =

 𝛽2 = {0, 1.0, 5.0}. The average rewards obtained during each training are shown

in Figure 10. The training was done in the mental simulation of the 7th floor of

the Corporate Collaboration Center, shown in Figure 8. All models were trained

from scratch, using an Nvidia RTX 2080TI GPU to perform the batch

optimizations. Each training session ended after 30000 episodes (approximately

1 million experiences and 116 hours of training). All the hyper-parameters

were the same across the three models apart from the regularization term

40

Table 2 - Optimized Number of Samples

Place Name Number

of

Samples

Graph

Build

Time

(ms)

Path

Search

Time

(ms)

Path

Length

(m)

Success

Rate

KDJ Convention Center

1st floor 329 2664.3 12.06 152.58 92%

corridor 1 260 1996.5 10.18 114.43 94%

corridor 2 176 1502.3 9.15 39.41 100%

corridor 3 127 759.68 7.86 50.68 98%

Corporate Collaboration Center 7th floor

corridor 1 87 247.98 5.22 25.60 92%

corridor 2 92 183.0 4.68 59.48 94%

corridor 3 89 195.37 6.56 13.41 92%

corridor 4 87 119.20 4.99 6.71 98%

corridor

5

89 169.88 5.33 40.57 96%

Figure 10 shows that by adding a small regularization (green line) term to

encourage the robot to move forward speeds up the learning when compared

with the training without regularization (blue line). When there was no

regularization, the robot would initially learn that simply not moving is a good

strategy to avoid collisions. This behavior slows down the training and the

variety of the experiences collected. The regularization term is a way to induce

the robot to move, therefore improving the exploration of initial steps. The un-

regularized policy eventually achieves similar rewards as the regularized

version, which shows that most of the regularization benefits show on the

exploration phase. In other words, the regularized model achieves similar

performance while requiring a smaller amount of training. However, if the

41

regularization term is too big (red line), it can hinder the robot’s performance

or even make the robot not learn at all. When using high regularization values,

the robot would ignore the reward and optimize only the regularization term,

which resulted in the robot going straight into walls.

Figure 10 - Moving average of the rewards obtained during each training. Each

vertical light-colored interval represents the moving standard deviation. A

window of 100 episodes was used for both moving average and moving standard

deviation.

42

5.3 Hybrid Navigation

To verify the robustness of the hybrid navigation method proposed in this

work, we performed a long-range navigation mission in a simulated

environment. We compared our work with the state-of-the-art motion planner

Move Base. Whereas our hybrid autonomous navigation algorithm needs only

23 sparse laser range readings, Move Base utilizes all the 690 ranges. Hence,

we also compared our work with a Constrained Move Base, which only received

the same 23 range readings as our algorithm. Finally, we also tested how the

pure RL policy would deal with a long-range mission. The task environment is

shown in Figure 11. The robot should start from one of the edges of the building

and navigate without collisions until the opposing end. The total path has

approximately 140 meters. We performed the same task 10 times for each

planner. The summary of this experiment is shown in Table 3.

We can see that the pure RL policy was not able to complete a long-range

task without colliding. Due to the RL algorithm receiving only the Euclidian

distance to the goal, the relative angle would make the robot want to turn back,

go against a wall and then try to avoid hitting it, repeating this process in a loop.

This behavior ultimately led to the robot going too close to a wall and colliding

with it. Using only the RL policy resulted in the robot failing to leave the first

corridor on all tries.

43

Table 3 - Navigation Task Results

Method

Success

Failure

Success

Rate

Average

Distance

(m)

Average

Time (s)

Average

Distance

(m)

Move Base 141.04 123.31

— 100%

Constrained Move

Base
140.21 125.19 26.87 60%

Pure RL — — 14.7 0%

Hybrid PRM-RL 149.71 160.45 102.4 90%

Figure 11 - Long-range navigation task.

44

The baseline algorithm (i.e., Move Base) was able to perform the task

seamlessly in the shortest time and 100% success rate. Nonetheless, after

reducing the laser scanner resolution, the algorithm performed poorly. Due to

the lower resolution, the robot failed to perceive the obstacle when turning the

first corner, hitting it 40% of the time (usually when entering the curve too

close to the wall). Our proposed hybrid PRM-RL approach was able to complete

the task 90% of the time, using only 23 sparse laser scans to avoid obstacles,

and taking 7ms to generate a control command. The single failure happened due

to the PRM algorithm sampling a point too close to obstacles, which led to a

collision. The algorithm, however, could not perform as well as the original Move

Base algorithm, taking more time and some times a longer path. The main cause

was the localization algorithm miscalculating the robot position, then suddenly

updating to the correct position further ahead. Occasionally, this would cause

the robot to miss one of the PRM goals, turning back, reaching that goal, then

turning back again to continue the original path. Such behavior increased the

average time and distance taken to finish the task.

This validation experiment mimics the application proposed on this work,

where the mental simulation can be used to verify the feasibility of a plan. If the

sampled path contains a node too close to an obstacle, which would cause a

collision in the simulation, the roadmap can be re-sampled and a new path

generated. This would avoid the robot the need of the robot performing such

action in the real world, enhancing its overall safety.

45

6. Conclusion and Future Work

In this paper, a novel automatic mental simulation framework was proposed.

We have shown the usage of TOSM for environmental modeling and extended

its capabilities to represent robotic agents as well. This TOSM-based data was

used to generate a simulated environment without the need for human aid,

depending only on the robot known information. Such simulation is robust to

new objects, generating placeholders whenever an object has no 3D model

available. This allows our approach to be used in unknown environments,

regardless of the availability of 3D models for the encountered objects. We

showed that the mental simulation system could be used to train RL policies.

We also proposed an autonomous navigation policy that uses a sparse laser

range scan and a relative position in order to navigate in an unknown

environment. This policy used a custom loss with a regularization term that

improved the learning speed of the algorithm when compared with the baseline.

We also proposed a hybrid navigation algorithm that integrates a sampling-

based planner with an RL policy, enabling real-time long-range navigation.

Even though the path taken by our proposed algorithm was less optimal than the

state-of-the-art baseline, it showed a higher success rate when both

algorithms were using only a sparse input. We showed that mental simulation

could be used as a validation step before acting on the real world, enhancing the

robot’s safety.

As an ongoing work, we will continue to further improve the RL policy by

adding dynamic obstacles to the environment to further enhance the robot's

reactiveness. We will also port the mental simulation to a mobile robot to fully

46

integrate our proposed method with physical agents. The mental simulation can

be a central component of the new generations of robots. By using low latency

5G connections, robots can communicate with the cloud in real time. Thus, the

mental simulation can be run on a centralized cloud solution, validating robot

plans on real-time, and improving the overall safety of mobile robot operations.

47

References

[1] D. Kahneman and A. Tversky, “The Simulation Heuristic,” STANFORD
UNIV CA DEPT Psychol., vol. TR-5, 1981.

[2] T. Suddendorf and J. Busby, “Mental time travel in animals?,” Trends Cogn.
Sci., vol. 7, no. 9, pp. 391–396, 2003.

[3] P. Boyer, “Evolutionary economics of mental time travel?,” Trends Cogn.
Sci., vol. 12, no. 6, pp. 219–224, 2008.

[4] N. Burgess, “Spatial cognition and the brain,” Ann. N. Y. Acad. Sci., vol.

1124, pp. 77–97, 2008.

[5] G. Hesslow, “The current status of the simulation theory of cognition,”

Brain Res., vol. 1428, pp. 71–79, 2012.

[6] R. M. Gordon, “Folk psychology as simulation,” Mind Lang., vol. 1, no. 2,

pp. 158–171, 1986.

[7] A. M. TURING, “COMPUTING MACHINERY AND INTELLIGENCE,” Mind,

vol. LIX, no. 236, pp. 433–460, Oct. 1950.

[8] M. Polceanu and C. Buche, “Computational mental simulation: A review,”

Comput. Animat. Virtual Worlds, vol. 28, no. 5, pp. 1–15, 2017.

[9] I. Kostavelis, K. Charalampous, A. Gasteratos, and J. K. Tsotsos, “Robot

navigation via spatial and temporal coherent semantic maps,” Eng. Appl.
Artif. Intell., vol. 48, pp. 173–187, 2016.

[10] A. Cosgun and H. I. Christensen, “Context-aware robot navigation using

interactively built semantic maps,” Paladyn, vol. 9, no. 1, pp. 254–276,

2018.

[11] R. Waibel, M. and Beetz, M. and Civera, J. and D’Andrea, R. and Elfring, J.

and Galvez-Lopez, D. and Haussermann, K. and Janssen, R. and Montiel,

J.M.M. and Perzylo, A. and Schiessle, B. and Tenorth, M. and Zweigle, O.

and van de Molengraft, “RoboEarth-A World Wide Web for Robots,” Robot.
Autom. Mag. IEEE, vol. 18, no. June, pp. 69–82, 2011.

[12] B. L. Douglas, “CYC: A Large-Scale Investment in Knowledge

Infrastructure,” Commun. ACM, vol. 38, no. 11, pp. 33–38, 1995.

[13] I. Niles and A. Pease, “Towards a standard upper ontology,” Form. Ontol.
Inf. Syst. Collect. Pap. from Second Int. Conf., pp. 2–9, 2001.

[14] R. Gupta and M. J. Kochenderfer, “Common sense data acquisition for

indoor mobile robots,” Proc. Natl. Conf. Artif. Intell., vol. 94041, pp. 605–

610, 2004.

[15] M. Firdaus-Nawi, O. Noraini, M. Y. Sabri, A. Siti-Zahrah, M. Zamri-Saad,

48

and H. Latifah, “Encoder-Decoder with Atrous Separable Convolution for

Semantic Image Segmentation,” Pertanika J. Trop. Agric. Sci., vol. 34, no.

1, pp. 137–143, 2011.

[16] J. Han, L. Yang, D. Zhang, X. Chang, and X. Liang, “Reinforcement

Cutting-Agent Learning for Video Object Segmentation,” Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 9080–9089, 2018.

[17] S. Brahimi, N. Ben Aoun, A. Benoit, P. Lambert, and C. Ben Amar,

“Semantic segmentation using reinforced fully convolutional densenet

with multiscale kernel,” Multimed. Tools Appl., vol. 78, no. 15, pp. 22077–

22098, 2019.

[18] M. Tenorth and M. Beetz, “KNOWROB - Knowledge processing for

autonomous personal robots,” 2009 IEEE/RSJ Int. Conf. Intell. Robot. Syst.
IROS 2009, no. November 2009, pp. 4261–4266, 2009.

[19] M. Beetz, M. Tenorth, and J. Winkler, “Open-EASE,” Proc. - IEEE Int.
Conf. Robot. Autom., vol. 2015-June, no. June, pp. 1983–1990, 2015.

[20] M. Beetz, D. Bessler, A. Haidu, M. Pomarlan, A. K. Bozcuoglu, and G.

Bartels, “Know Rob 2.0 - A 2nd Generation Knowledge Processing

Framework for Cognition-Enabled Robotic Agents,” Proc. - IEEE Int.
Conf. Robot. Autom., pp. 512–519, 2018.

[21] T. Lombrozo, “‘Learning by Thinking’ in Science and in Everyday Life,”

Sci. Imagin., p. 230, 2019.

[22] L. Kunze and M. Beetz, “Envisioning the qualitative effects of robot

manipulation actions using simulation-based projections,” Artif. Intell.,
vol. 247, pp. 352–380, 2017.

[23] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning

for robotic manipulation with asynchronous off-policy updates,” Proc. -
IEEE Int. Conf. Robot. Autom., pp. 3389–3396, 2017.

[24] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement learning:

Continuous control of mobile robots for mapless navigation,” IEEE Int.
Conf. Intell. Robot. Syst., vol. 2017-Septe, pp. 31–36, 2017.

[25] P. Shah, M. Fiser, A. Faust, J. C. Kew, and D. Hakkani-Tur, “FollowNet:

Robot Navigation by Following Natural Language Directions with Deep

Reinforcement Learning,” 2018.

[26] G. Kahn, A. Villaflor, B. Ding, P. Abbeel, and S. Levine, “Self-Supervised

Deep Reinforcement Learning with Generalized Computation Graphs for

Robot Navigation,” Proc. - IEEE Int. Conf. Robot. Autom., pp. 5129–5136,

2018.

49

[27] G. A. Miller, “WordNet: A Lexical Database for English,” Commun. ACM,

vol. 38, no. 11, pp. 39–41, 1995.

[28] H. Liu and P. Singh, “ConceptNet — a practical commonsense reasoning

tool-kit,” BT Technol. J., vol. 22, no. 4, pp. 211–226, Oct. 2004.

[29] K. Sterelny, The representational theory of mind : an introduction. B.

Blackwell, 1991.

[30] J. Decety, “Brain Structures Participating in Mental,” Acta Psychol.
(Amst)., vol. 73, pp. 13–34, 1990.

[31] A. Tversky and D. Kahneman, “Availability: A heuristic for judging

frequency and probability,” Cogn. Psychol., vol. 5, no. 2, pp. 207–232,

1973.

[32] H. B. Kappes and C. K. Morewedge, “Mental Simulation as Substitute for

Experience,” Soc. Personal. Psychol. Compass, vol. 10, no. 7, pp. 405–

420, 2016.

[33] M. Hegarty, “Mechanical reasoning by mental simulation,” Trends Cogn.
Sci., vol. 8, no. 6, pp. 280–285, 2004.

[34] C. J. Bates, I. Yildirim, J. B. Tenenbaum, and P. W. Battaglia, “Humans

predict liquid dynamics using probabilistic simulation,” CogSci 2015, no.

July, pp. 172–177, 2015.

[35] B. Bergen and K. Wheeler, “Grammatical aspect and mental simulation,”

Brain Lang., vol. 112, no. 3, pp. 150–158, 2010.

[36] L. J. Speed and A. Majid, “An Exception to Mental Simulation: No Evidence

for Embodied Odor Language,” Cogn. Sci., vol. 42, no. 4, pp. 1146–1178,

2018.

[37] J. E. Laird, “It knows what you’re going to do,” 2001, pp. 385–392.

[38] D. Buchsbaum, B. Blumberg, C. Breazeal, and A. N. Meltzoff, “A

simulation-theory inspired social learning system for interactive

characters,” Proc. - IEEE Int. Work. Robot Hum. Interact. Commun., vol.

2005, pp. 85–90, 2005.

[39] N. L. Cassimatis, J. G. Trafton, M. D. Bugajska, and A. C. Schultz,

“Integrating cognition, perception and action through mental simulation in

robots,” Rob. Auton. Syst., vol. 49, no. 1-2 SPEC. ISS., pp. 13–23, 2004.

[40] M. Polceanu, M. Parenthöen, and C. Buche, “ORPHEUS: Mental simulation

as support for decision-making in a virtual agent,” Proc. 28th Int. Florida
Artif. Intell. Res. Soc. Conf. FLAIRS 2015, pp. 73–78, 2015.

[41] C. Buche, N. Le Bigot, and M. Polceanu, “Simulation within simulation for

agent decision-making: Theoretical foundations from cognitive science to

50

operational computer model,” Cogn. Syst. Res., vol. 40, pp. 46–58, 2016.

[42] P. Vicente, L. Jamone, and A. Bernardino, “Online body schema adaptation

based on internal mental simulation and multisensory feedback,” Front.
Robot. AI, vol. 3, no. MAR, 2016.

[43] D. Vanderelst and A. Winfield, “An architecture for ethical robots inspired

by the simulation theory of cognition,” Cogn. Syst. Res., vol. 48, pp. 56–

66, 2018.

[44] B. Gundersen, “Forming artificial memories during sleep,” Nat. Neurosci.,
vol. 18, no. 4, p. 483, 2015.

[45] H. F. Ólafsdóttir, F. Carpenter, and C. Barry, “Coordinated grid and place

cell replay during rest,” Nat. Neurosci., vol. 19, no. 6, pp. 792–794, 2016.

[46] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting

in partially observable stochastic domains,” Artif. Intell., vol. 101, no. 1–

2, pp. 99–134, 1998.

[47] V. Mnih et al., “Human-level control through deep reinforcement learning,”

Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[48] T. P. Lillicrap et al., “Continuous control with deep reinforcement learning,”

4th Int. Conf. Learn. Represent. ICLR 2016 - Conf. Track Proc., 2016.

[49] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing Function

Approximation Error in Actor-Critic Methods,” 35th Int. Conf. Mach.
Learn. ICML 2018, vol. 4, pp. 2587–2601, Feb. 2018.

[50] P. Long, T. Fanl, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards optimally

decentralized multi-robot collision avoidance via deep reinforcement

learning,” Proc. - IEEE Int. Conf. Robot. Autom., pp. 6252–6259, 2018.

[51] S. D. Pendleton et al., “Perception, planning, control, and coordination for

autonomous vehicles,” Machines, vol. 5, no. 1, 2017.

[52] M. Šeda, “Roadmap Methods vs . Cell Decomposition in Robot Motion

Planning,” pp. 127–132, 2007.

[53] J. Lee, Os. Kwon, L. Zhang, and S. E. Yoon, “A selective retraction-based

RRT planner for various environments,” IEEE Trans. Robot., vol. 30, no.

4, pp. 1002–1011, 2014.

[54] L. Kavraki and J. C. Latombe, “Randomized preprocessing of configuration

space for fast path planning,” in Proceedings - IEEE International
Conference on Robotics and Automation, 1994, no. pt 3, pp. 2138–2145.

[55] S. M. Lavalle and S. M. Lavalle, “Rapidly-Exploring Random Trees: A

New Tool for Path Planning,” 1998.

[56] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal

51

motion planning,” Int. J. Rob. Res., vol. 30, no. 7, pp. 846–894, 2011.

[57] M. Elbanhawi and M. Simic, “Sampling-based robot motion planning: A

review,” IEEE Access, vol. 2, pp. 56–77, 2014.

[58] A. Faust et al., “PRM-RL: Long-range robotic navigation tasks by

combining reinforcement learning and sampling-based planning,” Proc. -
IEEE Int. Conf. Robot. Autom., pp. 5113–5120, 2018.

[59] M. Fyhn, S. Molden, M. P. Witter, E. I. Moser, and M. B. Moser, “Spatial

representation in the entorhinal cortex,” Science (80-.)., vol. 305, no.

5688, pp. 1258–1264, 2004.

[60] S.-H. Joo, S. Manzoor, Y. G. Rocha, H.-U. Lee, and T.-Y. Kuc, “A

Realtime Autonomous Robot Navigation Framework for Human like High-

level Interaction and Task Planning in Global Dynamic Environment,” 2019.

[61] M. A. Musen, “The protégé project,” AI Matters, vol. 1, no. 4, pp. 4–12,

Jun. 2015.

[62] D. Silver et al., “A general reinforcement learning algorithm that masters

chess, shogi, and Go through self-play,” Science (80-.)., vol. 362, no.

6419, pp. 1140–1144, 2018.

[63] OpenAI et al., “Dota 2 with Large Scale Deep Reinforcement Learning,”

2019.

[64] R. Bellman, “The theory of dynamic programming,” 1954.

[65] E. W. Dijkstra and others, “A note on two problems in connexion with

graphs,” Numer. Math., vol. 1, no. 1, pp. 269–271, 1959.

52

논문요약

온톨로지 기반 모델링 프레임워크를 이용한

자율 학습 및 계획을 위한 정신 시뮬레이션

Yuri Goncalves Rocha

전자전기콤퓨터공학과

성균관대학교

인지과학의 발견은 인간이 사고로 시뮬레이션 환경을 구성하는 뛰어난 능력을

가지고 있다는 것을 보여주었다. 이러한 시뮬레이션 환경은 미래를 전망하고,

과거의 기억을 재실행하며, 알려진 상황에 대해 다른 결과를 시뮬레이션하고,

궁극적으로 실제 물리 환경에서 동작하지 않고도 계획된 행동을 학습하고

시험하는데 사용될 수 있다. 이러한 인지 능력은 현재 로봇 시스템을 이와 유사한

방식으로 발전시켜, 로봇 시스템을 실행하기 전에 계획된 행동의 결과를 예측할 수

있게 할 수 있다. 또한 강화학습 알고리즘을 수행하기 위해 사람이 관여하지

않고도 자동으로 실행하는 플랫폼을 제공함으로써 점진적으로 기술을 향상시킨다.

그러기 위해서 정보가 풍부한 서술적 프레임워크를 사용하여 환경과 로봇 자체를

모델링해야 한다.

본 연구에서는 "트리플렛 온톨로지 시맨틱 모델"을 활용하여 로봇과 그 주변

환경을 표현하였다. 이 모델링된 데이터는 사람의 간섭없이 자동적으로 시뮬레이션

환경을 생성하는데 사용되었으며 생성된 시뮬레이션 환경은 자율 주행을 위한 강화

학습에 사용되었다. 또한 고전적인 플래너와 강화학습 알고리즘을 결합한

하이브리드 내비게이션 방식도 제안하여 long-term 내비게이션 기능을 개선했다.

실험 결과는 사고 시뮬레이션이 강화학습 알고리즘을 트레이닝하고 계획

53

타당성을 검증하는 데 사용될 수 있다는 것을 보여준다. 제안된 방법은 sparse

데이터만을 사용하여 long-term 내비게이션 작업을 수행할 수 있었고, 제어

명령을 실행하는 데 7ms가 소요되었다.

주제어: 사고 시뮬레이션, 자율 주행, 강화학습, 경로 계획, Probabilistic Roadmap

 M
a
s
te

r

’s
 T

h
e
s
is

 M

e
n
ta

l S
im

u
la

tio
n
 fo

r A
u
to

n
o
m

o
u
s
 L

e
a
rn

in
g
 a

n
d
 P

la
n
n
in

g

2
0
2
0

Y

u
ri G

o
n
c
a
lv

e
s
 R

o
c
h
a

