Master’ s Thesis

Mental Simulation for Autonomous
[Learning and Planning Using an

Ontology —Based Modeling
Framework

Yuri Goncalves Rocha

Department of Electrical and Computer

Engineering
The Graduate School

Sungkyunkwan University

Master’ s Thesis

Mental Simulation for Autonomous
[Learning and Planning Using an

Ontology —Based Modeling

Framework

Yuri Goncalves Rocha

Department of Electrical and Computer

Engineering
The Graduate School

Sungkyunkwan University

The author of this thesis is a student who is sponsored by

the Global Korea Scholarship program.

Mental Simulation for Autonomous
[Learning and Planning Using an

Ontology —Based Modeling
Framework

Yuri Goncalves Rocha

A Master's Thesis Submitted to the Department of
Electrical and Computer Engineering and the Graduate School
of Sungkyunkwan University in partial fulfillment of the
requirements for the degree of Master of Science in
Engineering

April 2020

Supervised by
Tae—Yong Kuc
Major Advisor

This certifies that the Master's Thesis

of Yuri Goncalves Rocha 1s approved.

Committee Chairman:

Committee Member:

Major Advisor:

The Graduate School
Sungkyunkwan University
June 2020

Table of Contents

LISt Of Tables coiiiiiiiiiiii vil
LISt Of o gUI S e e e Vil
ADSTIACT c ettt viil
Lo INErOAUCTION e e e ettt eeeeeaes 1
2. Related WOTrK ... s 4
2.1 Knowledge and Semantic Modelingcoouvinviiiiiiiiiieee e, 4
2.2 Mental Simulation on HUMANSuuiuiiiiiiiiiiiiiiiiiiiieiiieieeeeeeee 6
2.3 Mental Simulation on RODOES......uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 7
2.4 Relnforcement LearmiIng ..o 9
2.0 MOTION PLAINNIIIE en ittt 11
3. Automatic Mental SImulation..........uueiiiiiiiiiiiiiiii e 13
3.1 Triplet Ontologic SemantiC MOAELINEG «.c.uveniineie e 13
3.2 Environment De S CriDtiom. . e e 15
3.3 RODOE DESCIIDIION ettt ettt ettt e e e e e 15
3.4 Generating the Mental SIMulation.............eeeeeeeeiieiiiiiiiiiiiiiiiiees 17
4. Mental SImulation AP DI CATION cuuen it 21
4.1 Reinforcement Learningcceeeeeeiiiiiiiiiiiiiie e 21
4.1.1 Problem DefinitiOnuuuuuueiiiiiiiiiiiiiiiiiiiiiiitiiieteieieeeiee e 22
A] 2 QL A I I et e 23
4.1.3 POlICY GIradi€Nts .uuuuuuuueeieieieiiiiiiiiiiiiiieiitiieieieeeeee e 24
AT 04 A CTOT 7 CIEICS ettt 25
4.1.5 Deep Deterministic Policy Gradientsccccevvviiiiiiiiiieiiiiiiiiiiiiineeeeeeeees 26
4.1.6 TwiIn Delayed DDP G ..o e 28
4.2 MOtION PIANNIING ©.ttttttiiiiiiiiiiiiiiiiiiiiieieii e 31
4.2.1 WaYPOINE GONETALOL enenttete e et 32
4.2.2 Hybrid PRM—RL Planner ... 33

5. Experiments and DISCUSSION .iuuteutietie ettt eee 35

5.1 NUMD T Of SaIm D S et e, 35
5.2 Loss FUunction REQUIATIZET ...vunieiie e 39
5.3 HyDIid NavVIGatlom . e et e 42
6. Conclusion and Future WOrk ... 45
REFEIEINCES ittt 47
TR R s 52

vi

List of Tables

Table 1T — Map INFOrmMation .ueu et 36
Table 2 — Optimized Number of SAmPlES ..t 40
Table 3 — Navigation Task ReSUIES i 43

List of Figures

Figure 1 — TOSM deSCIIDTIOMN ttnttnttn ettt enaeens 14
Figure 2 — Differential robot used in thisS Workocoviviiiiiiviiii e, 16
Figure 3 — Robot OWL datagraph....co.veiiiieiieee e 17
Figure 4 — Mental simulation building steps and data—flowcovevveeieeenvennnnn. 18
Figure 5 — Environment generated by the mental simulation algorithm........... 19
Figure 6 — TD3 architecture for autonomous navigation...........c.eeeevevveeveeeneennns 31
Figure 7 — Hybrid Planner StrUCTULe ..oo.vvevieiii e 34
Figure 8 — Mapped Environments. The mapped area is shown in red............. 36
Figure 9 — PRM performance based on the number of samples........cc.cooeeenne.. 37

Figure 10 — Moving average of the rewards obtained during each training....41

Figure 11 — Long—range navigation taSK. ..oooeiiviirieii e, 43

Vii

file:///E:/%5bFinal%20Version%5dYuri_Master_Thesis.docx%23_Toc44688961
file:///E:/%5bFinal%20Version%5dYuri_Master_Thesis.docx%23_Toc44688962
file:///E:/%5bFinal%20Version%5dYuri_Master_Thesis.docx%23_Toc44688963
file:///E:/%5bFinal%20Version%5dYuri_Master_Thesis.docx%23_Toc44688964
file:///E:/%5bFinal%20Version%5dYuri_Master_Thesis.docx%23_Toc44688965
file:///E:/%5bFinal%20Version%5dYuri_Master_Thesis.docx%23_Toc44688966
file:///E:/%5bFinal%20Version%5dYuri_Master_Thesis.docx%23_Toc44688968
file:///E:/%5bFinal%20Version%5dYuri_Master_Thesis.docx%23_Toc44688969
file:///E:/%5bFinal%20Version%5dYuri_Master_Thesis.docx%23_Toc44688970

Abstract

Mental Simulation for Autonomous Learning and
Planning Using an Ontology —Based Modeling

Framework

Cognitive science findings have shown that humans have an outstanding
ability to create simulated worlds on their minds. Those simulated environments
can be used to prospect into the future, re—act memories from the past, simulate
different outcomes for a known situation, and, ultimately, learn and test planned
actions without the need to act on the physical world. Such cognitive skills could
similarly enhance current robotic systems, allowing them to predict the
outcomes of their planned actions before executing them. It also provides a
platform that can be run autonomously to perform reinforcement learning
algorithms, gradually improving the robot’s skills. Hence, the environment and
the robot itself should be modeled using an information—rich descriptive
framework.

In this work, we used and expanded the Triplet Ontological Semantic Model
to represent the robot and its surroundings. This modeled data was used to
autonomously generate a complete simulated world, without the need for human
aid. This simulated world was used to train a reinforcement learning policy for
autonomous navigation. We also proposed a hybrid navigation method that
combines classical planners with the trained policy, improving its long—term
navigation capabilities.

Experiment results show that the mental simulation can be used to both train

viii

the policy and verify a plan feasibility. The proposed method was able to
perform long—distance navigation tasks using only sparse range data and taking

7ms to execute a control command.

Keywords: Mental Simulation, Autonomous Navigation, Reinforcement Learning,

Path Planning, Probabilistic Roadmaps

1.Introduction

Early studies on cognitive science [1] proposed that mental simulation is one
of the fundamental cognitive skills. Humans (and perhaps other animals as well
[2]) can predict and anticipate outcomes by recalling past experiences and re—
simulating them in their minds. Such ability is considered one of the foundations
on episodic memory [3] and paramount for task planning during navigation [4].
It can be subsumed as building a simulated world inside one’s mind, which is
capable of working on its own (with varying levels of complexity) and using this
world to review, infer and predict outcomes, which finally shapes one’s behavior
on the real world.

Mental simulation theory starts from the presumption that behaviors can be
simulated, perception systems can also be simulated, and outcomes can be
anticipated by combining simulated behaviors and perception [5]. Early
researches on cognitive science and neuropsychology showed that such a
mechanism is also used to predict one’s counterpart’s thoughts and behaviors
[6].

During the early stages of artificial intelligence, Alan Turing proposed that,
to think and speak like a human, a robot might need a human—like body, capable
of mimicking sensorial and motor capabilities, and that the development of its
cognitive skills should be as simple as teaching a child [7]. Some more recent
works suggested that cognitive capabilities, such as mental simulation, should
not only be integrated into learning and planning algorithms, but also be their
central architectural layer [8]. To do so, it is paramount that the robot can

semantically understand its surrounding environment. Thus, adding another

layer to the robot knowledge, allowing a better understanding of the relations
and intrinsic concepts of the world, which are naturally inferred by humans.
Semantic data has been explored on several fields of robotics and artificial
intelligence, such as navigation [9], [10], knowledge representation [11]-[14]
and computer vision [15]-[17], however just a small fraction of them use it to
perform mental simulations [18]-[20].

Mental simulation is important not only for remembering past actions and
planning the future ones but also “learning from imagination” [21]. Initially,
humans learn by experience. Indeed, our first learning experiences as a toddler
come from interacting with the environment and with ourselves and observing
the outcome. After acquiring enough experience, we can simulate such
experiences in our mind, and learn by thinking about those experiences,
reducing the need to always have a propitious environment, thus accelerating
the learning process. Such a skill can and should also be incorporated into
robotic systems. In robotics, one of the fields on Artificial Intelligence (AD) is
called Reinforcement Learning (RL). RL was based on the way humans learn,
exploring the environment and receiving rewards or penalties depending on how
well the robot executed the given task. A sub—division of RL, known as Deep
Reinforcement Learning (deep—RL), combines the concepts of RL with deep
neural networks and has seen a rise in popularity on several robot applications,
such as manipulation [22], [23] and autonomous navigation [24]-[26].

This work uses semantic modeling to represent the environment and robots
themselves, enabling them to automatically generate a complete mental
simulation environment without human assistance. This simulated environment
was used to validate planned actions before executing them in the real world. It

was also used when the robot is idle (e.g., charging, or in—between missions)

to run RL algorithms, taking robots one step closer to full autonomy. Our major
contributions are:

e An extension of the Triplet Ontological Semantic Modeling framework
to allow representing a robot;

e A mental simulation generating algorithm that creates a simulated
environment automatically using only the information on the robot’s
database;

e A hybrid navigation method that combines a sampling—based planner
with a reinforcement learning navigation policy, enabling real—time
long—range navigation.

The rest of the paper is organized as follows. Section 2 contains an overview
of mental simulation, reinforcement learning, and planning solutions. Then, the
environment and robot modeling and the architecture used to generate an
automatic mental simulation are presented in Section 3. Furthermore, Section 4
describes two different applications for the mental simulation: training a
reinforcement learning policy and validating a plan. Section 5 presents our
simulation results, where we compare them with the current state—of—the—art
algorithms. Finally, Section 6 concludes the paper and presents research

directions for future works.

2.Related Work

2.1 Knowledge and Semantic Modeling

A large portion of our current surrounding environments was designed by
humans, for humans. Throughout our history, we shaped our world according to
our needs and convenience. Robots are now starting to work on those dynamic
environments and, to successfully act on our world, they should be able to
understand it in a similar fashion as we do. In other words, robots need
knowledge about their environment, task, and its design and capabilities. Such
knowledge should be structured in a way machines can understand effectively
while representing the intrinsic relationship between different individuals on a
large scale.

Several works proposed ways of incorporating knowledge into computers.
Some gathered a large amount of encyclopedic knowledge into their databases
[12], [13], [27], [28]. Also known as general knowledge graph databases, they
tried to subsume a vast spectrum of domain—agnostic knowledge. CYC [12]
tried to formalize commonsense knowledge, mostly handcrafted by knowledge
experts. As of today, it is composed of more than 10 thousand predicates and
more than 25 million assertions, mostly composed of proprietary data owned by
Cycorp, the creator of CYC. The Suggested Upper Merged Ontology (SUMO)
[13] was created by merging already publicly available knowledge bases into a
single standardized structure. At the time of its publication, SUMO had 654
terms and 2351 assertions, distributed as an open—source knowledge base.

WordNet [27] is a database of English words, mostly nouns, verbs, and

adjectives, connected by a small set of semantic relations. Its second version
subsumed around 200000 words. ConceptNet [28] was automatically generated
from English sentences of the Open Mind Common Sense (OMCS) corpus. It
combined simple semi—structured English sentences connecting them using
twenty specified semantic relations. The whole network had more than 300000
connected nodes.

The main drawback of general knowledge graphs is that it tries to englobe a
large variety of data from different domains, which is good for textual tasks and
contextual commonsense reasoning but lacks accuracy and granularity when
used on specific domains, such as robotics. The robotics domain needs more
detailed knowledge about the physical world, its occupants, objects, tasks and
behaviors, and the relationship between them. The Open Mind Indoor Common
Sense (OMICS) [14] knowledge base is an object—centric framework that
contains knowledge needed for robots to execute several tasks in an indoor
home or office environment. Its structure was based on the OMCS sentence
templates. The RoboEarth [11] project tried to create the World Wide Web for
robots, a distributed cloud—based platform where robots would be able to
autonomously share and reuse knowledge. The cloud database would store
sensorial and modeled data from objects (such as CAD models, point clouds,
and images) and human—readable action receipts. Each robot would have a skill
abstraction layer that would receive those action sequences and convert to
actions that can be executed by the robot hardware. OpenEASE [19] went on a
similar path by also offering a cloud solution for knowledge storage, but it also
allowed full manipulation task episodes to be stored, which could be later
queried, visualized, and analyzed. This work proposes a new semantic

knowledge framework, which is able to represent not only the environment but

also the robot itself. It focuses on representing knowledge in a general way so
that it can be used in a large span of applications, but also with enough
information to allow robots to simulate the environment based only on their

internal knowledge.

2.2 Mental Simulation on Humans

The mental simulation paradigm has shown constant interest from cognitive
science and neuropsychology fields [11, [6], [29], [30]. One of the pioneering
works on this field was done by Kahneman and Tversky [1], by suggesting
there were some situations when finding an answer for a problem, humans would
run a mechanism which resembled a simulation. They also affirmed that such
simulations would yield various outcomes, giving us a bias of which result was
more likely to happen. They affirmed that these simulations could be used for
predicting future events, asserting a probability of its occurrence and reasoning
about causality (i.e., whether event A led to event B). This causality principle
was then shown to affect how we do counterfactual reasoning, easily described
as “what if” scenarios, which we use to imagine different outcomes to a series
of events that have already happened. In an earlier study [31], Tversky and
Kahneman also showed that the ease of the subject to determine an outcome of
an event was greatly influenced by the availability of similar events in their
memory. Gordon [6] showed the usage of mental simulation when predicting
someone else’s behavior, intents, and beliefs, a concept also known as ‘Theory
of Mind" [29].

Later works were more focused on which areas of the brain are activated

when performing mental simulations [30] or on which specific applications they

are used. Kappes et al. [32] suggested that we use it as a substitute for physical
experiences due to its easier availability. Lombrozo [21] showed that those
virtual experiences could be used as a learning tool. Hegarty [33] and Bates et
al. [34] demonstrated that mental simulation is also used when dealing with
complex physics concepts, such as mechanical reasoning (e.g., predicting which
way a gear would turn when connected with several other gears) and predicting
liquid dynamics (e.g., reasoning that water is more likely to spill when being
poured than a high viscosity liquid). Burgess [4] showed that mental simulation
and episodic memory are paramount when performing navigation. Finally,
Bergen et al. [35] showed the influence of grammatical structures when
mentally simulating a sequence of actions, while Speed et al. [36] argued that
odor has little to no influence on mental simulation, whereas visual and auditory

information plays a significantly bigger role.

2.3 Mental Simulation on Robots

Despite being thoroughly studied by cognitive science researchers, the
mental simulation concept is yet to be fully explored in Artificial Intelligence
and Robotics fields. Indeed, it only started to be applied to computational
systems a few decades ago. The first works on the field focused on the “putting
yourself on someone else’s shoes” application, where an agent would simulate
itself on another actor’s perceived state in order to infer about its feelings and
intentions. Laird [37] created a Quake bot that would try to predict its
opponent's next action by simulating itself on the opponent's pose and then
running its own algorithm. Leonardo [4] was created to assist a human operator

on its task. To do so, Leonardo would simulate itself on the human’s perceived

state and guess its intentions by using his own internal module. Leonardo would
then try to assist with the predicted action. Buchsbaum et al. [38] developed a
simulated character that would try to infer its counterpart’s action and imitate
it based on its own internal kinematic model.

Cassimatis et al. [39] proposed a planning architecture that combined several
different reasoning and inference algorithms by using a common knowledge
representation so a robot would be able to perform logical simulations to track
another agent. ORPHEUS [40] is a system created to aid a hunter to catch prey.
It used mental simulation to run several different plans and select the most
suitable one to be applied to the real situation. The mental simulation was
automatically generated based on the data extracted from the hunter perception.
Buche et al. [41] extended this work by adding multiple agents to the
environment and allowing online adaptation of the planned path. They also used
the same approach to let a virtual juggler predict the ball path while juggling
either alone or collaborating with other agents, being them simulated or humans.
Vicente et al. [42] used mental simulation combined with proprioceptive data to
simulate on which pose a robot hand would appear on its image and then match
this simulated result with the real camera image using Bayesian techniques.
This combined data was used to do an online update to the robot’s internal
kinematic model. KnowRob 2.0 [20] is a knowledge processing framework that
i1s able to perform logical reasoning using both a semantic knowledge database
and mental simulation (there called “The mind’s eye”) capable of replaying the
robot’s past experiences to explore new outcomes. This work, however,
focused mainly on manipulation tasks. Vanderelst et al. [43] developed an
ethical robot that used mental simulation to validate its several planned

behavioral alternatives according to Asimov’s laws of robotics. The robot would

then choose the action which complied with those laws. Except for [20], [40],
[41], most of the cited works focused on a specific application, where the
simulation environment was tailored by domain experts. We reckon such
cognitive skills should be an intrinsic skill for robotic systems, so they can
achieve full autonomy. This work proposes a mental simulation automatic
generation algorithm, using only the robot's internal knowledge without the need
for human aid. This simulation was then used to perform reinforcement learning

and to validate motion plans.

2.4 Reinforcement Learning

New evidence from neuroscience and psychology studies suggest that
animals might replay navigation sequences when sleeping, discovering new
routes, and also consolidating the memorized ones [44], [45]. We envision that
the next generation of robots should be able to use their idle time to constantly
learn new skills. One of the ways of achieving such autonomous learning
capabilities is by using Reinforcement Learning approaches. Reinforcement
Learning (RL) algorithms try to map a set of sensory inputs to actions by
formulating this task as a Partially Observable Markov Decision Process
(POMDP) [46]. Deep RL uses deep neural networks (DNN) to approximate such
mapping.

Mnih et al. [47] created a DNN named Deep—Q Network (DQN) to
approximate the Q—value estimation for a value—based RL approach. Shah et al.
[25] developed a novel end—to—end architecture, which learned how to
interpret natural language instructions and a semantic segmented RGB—D image

to navigate in places without any map or current position information. They used

a combination of Convolution Neural Networks (CNN), a bi—directional Gated
Recurrent Unit (GRU) weighted by an attention mechanism, and a DQN, which
learned a policy that converts the input data into discrete move left front and
right control actions. Due to only being able to output discrete actions, DQN is
not suitable for several robotic applications, which are inherently continuous.
Lillicrap et al. [48] proposed an actor—critic RL approach called Deep
Deterministic Policy Gradients (DDPG), which used separated DNNs for action
generation and Q—value approximation. This architecture was able to perform
continuous actions. Tai et al. [24] proposed an end—to—end architecture, which
takes as input sparse 10—dimensional laser range readings and a relative goal
coordinate, and converts it to a continuous velocity output. They extended the
DDPG algorithm to an asynchronous version, which was shown to collect four
times more samples than the original synchronous version. DDPG, however,
suffered from value over—estimation and unstable learning. Fujimoto et al. [49]
proposed the Twin Delayed Deep Deterministic Policy Gradients (TD3), which
learned two critic networks but only used the smallest value between them when
predicting future rewards. They also delayed the actor training step to improve
overall learning stability. Kahn et al. [26] developed a novel model, called
Generalized Computation Graphs (GCG) for reinforcement learning, to generate
a hybrid model—free, model—based algorithms for robot navigation. The key
aspect of this GCG was the use of a multiplicative integration Long Short Term
Memory (LSTM), which would encode the next H actions and its predicted
rewards. By carefully choosing the output values of the LTSM (.e., the
expected reward data shape), the GCG could either behave as a value—based
model—free algorithm or as a model—based algorithm. Long et al. [50] applied

RL paradigms to the multi—robot field. They used a centralized learning,

10

decentralized execution approach, where each robot would execute its next
action based on individual readings, however, a single shared policy would be

trained by the experience collected by every robot simultaneously.

2.5 Motion Planning

Motion planning can be defined as finding a valid motion path given a goal
point, a sensorial input, and a list of constraints, such as not colliding with
obstacles. Planners are usually compared based on their computational
efficiency and scalability and on their ability to find an optimal solution in finite
time [51]. Motion planners can be roughly divided as cell decomposition
methods (CDM), potential field methods (PFM), and sampling—based methods
(SBM).

CDMs divide the environment’'s free space into small cells and find a
sequence of adjacent cells that connect the current position to the goal while
avoiding occupied spaces. They suffer, however, from several issues such as
limited granularity, combinatorial explosion, and generating infeasible solutions
[52]. In PFMs, every goal is modeled as an attractive force, while obstacles are
repulsive ones. To get to the goal, the robot follows the gradient direction
generated by the combination of those fields. Nevertheless, they are susceptible
to converge into local minima, which would trap the robot midway [52]. SBMs,
on the other hand, have attracted considerable attention due to its scalability
and probabilistic completeness, namely, if the number of samples converges to
infinity, the probability of finding the optimal path converges to 1. Probabilistic
roadmaps (PRM) and rapidly —exploring random trees (RRT), two of the most

notable PRMs [53], sample points in a similar way, but differ largely on how

11

they connect those points. PRM [54] maintains several graph expansions
simultaneously, having a good performance on high—dimensional spaces. RRT
[55], on the other hand, rapidly explores a single graph, being more suitable to
smaller environments. Despite being probabilistic complete algorithms,
Karaman et al. [56] showed that most of the time, both algorithms returned
non—optimal solutions. The authors then introduced the asymptotically optimal
versions of each method, PRM#* and RRT*, respectively. Nonetheless, PRM* and
RRT* provided no theoretical guarantees of their optimality [57] and had a
slower convergence compared to their original forms. Faust et al. [58] tried to
solve the shortcomings of SBMs and RL algorithms by combining both into a

hybrid approach. A similar method was used in this work.

12

3. Automatic Mental Simulation

In this section, we describe in detail the environment modeling and the mental

simulation generation algorithm.

3.1 Triplet Ontologic Semantic Modeling

Researches on the cognitive sciences and neuroscience fields [4], [59]
showed that the human brain has an outstanding ability to generate, maintain
and update spatial maps of known environments, also called the brain “GPS.”
Humans rely heavily on relational information instead of precise measurements,
allowing our brain to efficiently map even large environments. This scalability
and data efficiency remains unparalleled when compared to the Ilatest
technologies. Robots still need to be fed with memory inefficient but high—
resolution metric data to localize themselves and navigate through known
environments. Several different map definitions have been used by the robotics
community, such as shown in Figure 1. All those maps, however, can share some
common data between them, wasting memory space and hindering the robot’s
long—term capabilities.

The Triplet Ontologic Semantic Modeling (TOSM) [60] was created to
change the way data is stored and used by robots. TOSM can be divided into
three main pillars, as shown in Figure 1. The explicit model is used to describe
any data that can be perceived by the robot sensors, such as shape, color, pose,
and size. Most of the data used by current robotic systems can be englobed on

this model. The implicit model, on the other hand, contains any intrinsic

13

information that cant be obtained directly from sensors and should be inferred
using the robot’s current knowledge. It can range from physical properties such
as mass and friction coefficients, to relational semantic data, that describes
objects/places relative position. It can also store encyclopedic knowledge, such
as “an automatic door opens if there is a subject in front of it.” Finally, the
symbolic model contains a human-—like definition for the elements, namely
symbols, names, descriptions, and identification numbers.

In order to store the TOSM—encoded data using a computer—readable format,
both the robot and the environment data were stored into separated Ontology
Web Language (OWL) files. OWL was chosen due to being a well—defined

language vastly used by the community and with several tools and applications
openly available. We used the Protégé framework [61] to manipulate and visualize

OWL files.

Triplet Ontological Semantic Model

EXPLICIT

Topologic
MODEL P 9

|

Semantic
IMPLICIT I
MODEL

Metric

Figure 1 — TOSM description

14

3.2 Environment Description

The environment can be divided into places and objects. Places can be
anything from a building to a single floor or even a small room. Their explicit
model contains their boundary points, while the implicit model subsumes the
relational data, i.e., which other places it is connected to and which places it is
inside of. The implicit data also stores the complexity of the place, a number
between O and 1, which represents the proportion of the area which is occupied.

Regarding objects, the explicit model contains the object’s size, pose, color,
and shape. The implicit model stores the object’s mass and material, and the

LT3

relational spatial data, such as “ in front of,” “next to,” and “inside of.” The
symbolic data is the same for places and for objects, containing the
place/object name and an identification number.

In this work, we extended the TOSM framework to also encode a complete

robot definition.

3.3 Robot Description

In this work, we modeled the differential robot shown in Figure 2. The robot
1s equipped with a stereo camera and a laser range finder. The modeling
proposed in the section, though, can be applied to several different types of
robots.

A modular approach was used to describe robots. A robot can be divided into
four main components: structural parts, joints, wheels, and sensors. A robot can
contain none, one, or multiple instances of any of those parts. Each part was

modeled using TOSM encoding (i.e. each part has an explicit, implicit, and

15

Differential Robot

Real Robot Simulated Robot

Figure 2 — Differential robot used in this work

symbolic model). The explicit data is virtually the same across all robot parts,
while the symbol data contains the name and an identification number. The
implicit model, however, is unique for each category. Structural parts need to
encode their weight and material information. The wheel representation extends
it to also store whether it is an active or a passive wheel. Joints, on the other
hand, store which two parts they are connected to. Finally, sensors have
different implicit data depending on their type. Cameras can be represented by
their resolution, frames per second, field of view, and, in the case of RGB—D
cameras, by their minimum and maximum ranges. A laser range finder is
described by its range, view angle, number of samples, and resolution. The OWL
datagraph of the aforementioned differential robot can be seen in Figure 3, and

the simulated robot generated through this data is shown in Figure 2.

16

OWL Datagraph

(SEme)——temu] ™ [@r=s
: \ e
7 . @ LaserSensor] @ Stereo_RGB
; | e @ StructuralPart = = = . =
; s e D e ~ .
= —__ | ®@ Actuator T e i =
v t *¢ zedcamerajont | -
® Wheel - S,
. o * @ pyramid3joint -3 ~———"* ¢ pyramid3
P o s * ¢ pyramid2
[@ owl:Thing] > [® loint | —" -m 3 St — _*0 pyramidl
Q iy e —— +
N\ f
\ —=—|" § casterWheel
\ = -~ Y ¢ leftWheel
3\ * @ rightWheeljoint [iy 1‘ rightWheel
@ SpacialStructur i o f
es = /
- > ey \
‘ @ Robot

Figure 3 — Robot OWL datagraph

3.4 Generating the Mental Simulation

One of the key issues when implementing mental simulation algorithms is the
need of domain experts to model the simulation according to the robot’s real
environment. This task becomes unfeasible for robots operating in large
dynamic environments. In order to improve the robot’s autonomous capabilities
and to remove the need for domain experts, we developed a middle—ware,
named simulation parser, capable of generating a simulation environment using
only the data stored in the robot’s database.

Whenever the robot receives a mission, it performs a query on the complete
database, generating a subset containing only the environment data relevant to
the current mission. This newly generated subset is called the on—demand

database. Through this system, we can reduce the memory requirements on the

17

robot by storing the complete database in the cloud and providing to the robot
only the data relevant to the current mission. The simulation parser then
consumes the data in the on—demand database and generates the needed files
to generate a corresponding simulated environment. The data—flow can be seen
in Figure 4. Two different files are generated by the parser. The first one is a
Simulation Description Format (SDF) file, which is consumed by the Gazebo
Simulator to generate the simulated environment. The second file is a Universal
Robot Description File (URDF), which is used by both the Gazebo Simulator and
the Robot Operating System (ROS) to generate and control the simulated robot.
Whenever the robot needs to use the mental simulation, both files are re—
generated, assuring that the simulation will be constantly updated whenever the
robot perceives a change in the real environment and updates its database.

To ensure the simulation similarity and consistency with the real world, we
used a library containing 3D models for several common objects, such as doors,

tables, and chairs. Nonetheless, when exploring new environments, the robot is

Mental Simulation Building Architecture

Robot
SDF

Map Parser

On-demand
DB

Robot Parser

\ J

Figure 4 — Mental simulation building steps and data—flow

18

bound to encounter objects whose there is no corresponding 3D model. Hence,
to improve the algorithm robustness, whenever the robot needs to simulate an
object of which it has no 3D model available, a placeholder is generated instead,
using the color and shape information stored in the on—demand database. A
comparison between an object of which there is a 3D mesh available and an
object of which a placeholder was generated be seen in Figure 5. The 3D model
database contains a mesh for a steel door, which was used in the simulation. On
the other hand, there is no available 3D model for a beverage vending machine,
hence the mental simulation building algorithm automatically generates a red

block placeholder, based on the color and shape perceived by the robot.

Beetz et al. [20] used a semantic modeling framework combined with mental

Mental Simulation

Database Visualization Real Objects

Generated Simulation Simulated Objects

Figure 5 — Environment generated by the mental simulation building algorithm

19

simulation to validate planned actions. However, their focus was on manipulation
tasks, building only small simulations with dynamic objects. The number of
available objects was limited to household items, of which there were 3D
meshes available. Our proposed approach allows the robot to simulate
previously unknown objects by combining the perceived shape, size, and color
information into a placeholder object. Hence, allowing us to perform large scale
simulations on unknown environments, while Beetz et al. approach was limited

to small indoor environments.

20

4.Mental Simulation Application

In this section, we introduce two different mental simulation applications,

namely, reinforcement learning and motion planning.

4.1 Reinforcement Learning

Reinforcement learning (RL) is inspired by one of the first learning methods
used by humans, namely learning by experience. RL works by letting an agent
explore a given environment and giving or removing rewards based on how well
the agent performed the desired task. RL has shown promising results in board
games [62] and computer games [63], mostly due to their controlled
environment and clear objectives. Robots, on the other hand, act on the physical
world, making it difficult to generate a large variety of experiences without
putting either the robot or their surroundings at risk. One solution for this issue
is to train a simulated robot and then transfer its knowledge to the real robot
[24]. In this work, we used the mental simulation as a training environment for
an autonomous navigation reinforcement learning algorithm.

A navigation problem can be formulated as a Partially Observable Markov
Decision Process (POMDP) [46] (S, A, O,R(s,a), T(s’|s,a) , P(o|s)). S, A and
O are the state, action and observation spaces, respectively, while R(s,a) is a
function which receives the current state and action and returns a corresponding
reward. Finally, T(s’|s,a) and P(o|s) are the transition and observation
probabilities, respectively. RL involves finding a policy m(o) — a,0 € 0,a € A,

which maps the current observation into an action that maximizes the sum of

21

the expected future rewards. To simplify this notation, we will refer to this
policy as m(als), i.e., a function that maps a state to an action. RL methods can
be divided into model—based and model—free value—based approaches. Model—
based approaches use a predictive function that receives the current state and
a sequence of actions and outputs the sum of the expected rewards. The policy
then selects the action sequence that maximizes the expected rewards based
on the predicted states. To generate such outputs, model—based algorithms
need to understand its environment and learn both the reward function R and
the transition probability function T. Model—free algorithms, on the other hand,
directly learn either a policy function or a value function (or both in the case of
actor—critic networks). A value function receives the current state and a given
action and outputs the sum of expected rewards. Generally, model—based
approaches are sample—efficient, while the model—free ones are better at

learning high—dimensional, complex tasks.

4.1.1 Problem Definition

Our navigation task consists of a robot that receives a laser scan and a goal
relative position and outputs a velocity command. Similarly to [24], instead of
using the raw laser scan data, we used 23 equally spaced discrete laser readings.
Using incomplete data forces the robot to better generalize to faulty input
information, increasing its robustness when encountering real—world scenarios
[24]. We also added Gaussian errors to input and output data to further mimic
real—world conditions. The goal relative position was encoded on the (r,8)
format. Moreover, the robot should output two distinct commands: the desired

linear and angular velocities.

22

The environment reward is one of the key hyperparameters when defining
RL algorithms. It is used to evaluate a given action and to generate gradients
that steer the policy into pursuing better rewards. The navigation problem
described in this work used the following rewards:

Tcompletion — t* T'ime, When arriving at the goal at time t,

r(s,a) = | Toser if getting closer to the goal, Eq. 1
—Tcollisions if too close to the obstacle,

where reompletions Ttimes Teloser aNd Teoliision are positive real numbers.

4.1.2 Q—Learning

A value function V(s) is a function that gives the expected return when
starting from the state s. The value function is defined using a self —consistency
equation called the Bellman equation [64]. The Bellman equation states that the
value of an input can be modeled as the immediate reward of this initial choice,
plus a weighted sum of the resulting state value. The on—policy and optimal

value functions can be defined as

VT(s) = alin [r(s,a) + YV™(s")], Eq. 2

V*(s) = max r(s,a) + yV*(s"), Eq. 3

where m is the policy, a is an action, s is the current state, s’ is the next state,
r(s,a) is the reward function and y ~ [0,1]. Similarly, we can define the action—

value function, also known as Q function. The Q function Q(s,a) returns the

23

expected value of being on the state s and performing the action a. The on—
policy and the optimal action—value functions can also be modeled by the

Bellman equation as follows:

Q(s,2) = r(s,a) +v_E_[Q(s',a)] Eq. 4

Q*(s,a) =r(s,a) + ymax Q'(s’,a’). Eq. 5
a

Q—Learning approaches try to generate a Q(s,a) function that approximates the
optimal action—value function shown on Eq. 5, thus called the target function.
An example of Q—Learning algorithm is the DQN [47] which uses a DNN to

approximate Q*(s,a).
4.1.3 Policy Gradients

Policy gradient algorithms try to directly optimize the policy mg(als), where
0 are some learnable parameters of m. To do so, an objective function J(mg) is
used to quantify the policy’s performance. The policy can then be optimized

through gradient ascent, as follows:
Btr1 = 8¢ + a Vg J(1mg) g, Eq. 6

where a is the learning rate and Vp J(mg) is called the policy gradient. Due to
explicitly learning the desired function, i.e., the policy, policy gradient

approaches tend to be more stable when compared to Q—Learning algorithms,

24

which indirectly improves the policy by learning an action—value function. Q—
Learning methods, though, can be performed off —policy, which means that they

can efficiently reuse past data, increasing their sample—efficiency.

4.1.4 Actor—Critics

Actor—critic methods are a combination of policy and value learning, that
aims to achieve both policy gradient algorithms stability and Q—learning sample
efficiency. The main idea is to use two different networks: one to generate an
action based on a state, and another one to evaluate this action by approximating
a state value or action—state value function.

The actor receives the observation as input and tries to generate the best
action. In other words, it learns how to approximate the optimal policy to control
the agent’s behavior. Its training is done using the policy gradient method by
carefully choosing an objective function that is related to the critic's evaluation.

The critic evaluates the taken action by computing a value function. This
value function learns how to predict either the state or the action—state value
function by using either Eq. 3 or Eq. 5 as a target function and minimizing the
minimum square error by performing the gradient descent algorithm.

Using this method, the critic learns to better evaluate how good or how bad
is to take a given action on a given state. In contrast, the actor uses this
evaluation to improve its action generation aiming to maximize future rewards.
The result is that each network learns how to perform a task more efficiently

when compared to when trained separately.

25

4.1.5 Deep Deterministic Policy Gradients

The deep deterministic policy gradients (DDPG) was originally proposed by
Lillicrap et al. [48] and used one DNN as a policy approximator (actor) and
another as an action—state value function estimator (critic). Its original
motivation was to extend DQN capabilities to environments with continuous
action spaces. When taking an optimal action, a DQN agent would compute an

action a = max Q*(s,a) which is trivial on discrete action spaces where there
a

are a finite number of possible actions. However, on continuous spaces, directly

finding max Q*(s,a) becomes a non—trivial optimization problem, which would
a

need to exhaustively search actions on a continuous space on each iteration. If

the policy is deterministic, however, maxQ*(s,a) can be approximated to
a

max Q*(s,a) = Q*(s,my(s)) allowing us to adapt the target from Eq. 5 to
a

Q*(s,a) =r(s,a) +yQ*(s", me(s)). Eq. 7

Then, we can sample a set D of independent experience tuples (s,a,r,s’,d)
where d € [0,1] is a boolean which states whether or not it was a terminal
experience. The loss function for the critic network then becomes the mean—

squared Bellman error (MSBE)

L(¢,D) = E [(Q¢(s, a) = (r+v(1 = Ay, (5" o4, (s’))z], Eq. 8

(s,.ars’,d)~D

which we use to perform gradient descent

26

where Q¢Wg and Mgyarg AT€ the target critic and target policy networks, and «
1s the learning rate hyperparameter. When minimizing the MSBE, we are trying
to make the action—state value function as close as possible to the target. If this
target uses the same network as the one being learned, the MSBE becomes
unstable, as we would be using a moving target for learning. To solve this issue,
Lillicrap et al. proposed a soft—updated target network, which would lag behind
the trained networks to provide a more stable target. The target weight updates

should happen every iteration using the Polyak averaging

Dtarg < TPtarg + 1-109, Eq. 10
Otarg < TOtarg + (1 —1)0, Eq. 11
where 7 ~ [0,1].
To train the policy network mg(s) we need to define an objective function

J(mg). The authors of [48] chose to use a function that tries to maximize Q(s,a).

Hence, we can define the objective function as
J(mg) = mgxsgD[sz(S» T[theta(s))]’ Eq. 12
which we use to perform gradient ascent

0 <06+ (lVg](T[g). Eq. 13

27

Finally, in order to encourage exploration, every action taken during training

has a random normal error € ~N(0,0) added to it.
4.1.6 Twin Delayed DDPG

Despite its overall good performance, DDPG has a common failure point of
overestimating the Q—values, which is then exploited by the policy network.
This usually leads to unstable learning or the agent overfitting to a sub—optimal
policy. Fujimoto et al. [49] proposed the twin delayed DDPG (TD3) to address
those issues. TD3 differs from the original DDPG on three main points: target
policy smoothing, clipped double Q—learning, and delayed policy updates.

Target policy smoothing adds a clipped random normal error to the target

policy

a’ = clip (T[etarg (s") + clip(€e, —€max » Emax) Amins amax) , e ~N(0,0), Eq. 14

which works as a regularizer, avoiding the target function mistakenly exploiting
sub—optimal actions. Clipped double Q—learning use two different DNNs to
approximate Qg; and Qg,. Both functions use the same target on their loss

functions by choosing whichever network outputs the smallest values

y(r,s',d)=r+y(- d)lrﬂré Q¢imrg (s',ah), Eq. 15
, 2
L@ D) = (s,a,r,sE",d)~D [(Q¢1(S, a) = y(rs 'd))]' Eq. 16

28

Lg2D)= E [(Qp2(s.@) = (5")| Eq. 17

This upper bounds the target, avoiding its overestimation thus increasing the
learning stability. Finally, the policy objective function was then adapted to
maximize Qgq, but updated only every n critic updates, allowing a more stable
critic value to be used as an objective function. Our work modified the policy

learning by adding a custom objective focused on navigation tasks
J(g) = max E [0p1(5,m6())] = frGro()[0] = 1D = By(mg()1D?%, Ea. 18

where f; and f, are hyperparameters and me(s)[0] and my(s)[1] are the linear
and angular velocities, respectively. By trying to maximize this objective
function, we encourage the robot to increase its linear velocity and decrease
the angular one, which may lead to a more smooth behavior. Our TD3—based
architecture is shown in Figure 6, and the training algorithm shown in Algorithm
1. We used a sigmoid function to encode the linear speed between [0,1] and the
hyperbolic tangent function to limit the angular speed between [—1,1]. Both
values are multiplied by constant weights, v =0.8m/s, w = 0.5rad/s, before

being sent to the robot as a velocity command.

29

Algorithm TD3 training
1

1 Create my(s), Q¢1(S, g (s)) and Qg (s, mg(s))

2 Copy initial weights to the targets 0iqrg < 0, ¢1mg — d)l,d)zmg — ¢,

3 loop until converges

4 Get observation s and compute a = clip(mg(s) + €, Apmin, Amax), € ~ N'(0,0,)
Execute a and get the next state s', the reward r and the done signal d
Store (s,a,r,s’,d) into the experience buf fer Eg

If disequal to 1,then reset the environment

Sample a random batchD = {(s,a,r,s',d)}, from Eg

©O© 00 N Oy O

Calculate the target actions
a' = clip (T[gtarg (s") + clip(e, —€max » €max) Amin amax), € ~N(0,0,)
10 Get the minimal target
/ _ _ : . 1o
y(r,s',d)=r+yQ d)lzilir% Q(mmg (s’,a")

11 Calculate the critic loss
1 , 2,
L(¢;, D) = ;Z(s,a,r,s',d%D(Qqsi(S' a) —y(r,s',d), i=12
12 Perform gradient descent

¢i < ¢y —aVyl(¢,D), i=12
13 If policyUpdate, then

14 Calculate the objective function

J () =~ B5p Qg (5,76 (5)) = B1(a()[0] = 1) = Bomg(s)[1]
15 Perform gradient ascent

0«0+ (ZVg](T[g)
16 Update the target networks

Otarg < T0targ + 1-7)6

Pirarg © iy + (1 =Dy, 1 =12
17 Endif
18 End loop

30

TD3 Structure

Three Consecutive
Sparse Laser Scans Concatenate the Input
with the Actor Output

tn-z _
A /

Y
\
| Forward
L 4
>
; : vl Angula
E B

|
L |
‘ Actor Network
v i B K_‘

———

=

—

Dense-512

——
—

Dense-512

S~ —

=

~

<

—

A»A-.
Dense-512

'v'

v

— ‘ ~ AW~ { o
R i A\ B /\ R
V] B
Extract Goal's v g % v é
Relative a a a
Position to the -
Robot (d,0) D D

Figure 6 — TD3 architecture for autonomous navigation

4.2 Motion Planning

Despite the constant development of new RL technologies, they still have
issues when dealing with long horizon rewards. The y hyperparameter on Eq.
15 weights how important future rewards are when compared to immediate ones.
The work done by Berner et al. [63] was able to use a 12 minutes reward

horizon (y = 0.9998), but further increasing of this horizon gave diminishing

31

returns. Navigation tasks on large—scale environments can take from several
minutes to hours, which increases the difficulty of learning how advantageous
an action was when its result comes several minutes in the future. Hence, in
this work, we used a hybrid structure that combines a sampling—based planner
with an RL policy, an approach which has already shown good results on long—
term navigation [58]. We use the mental simulation environment to validate the
feasibility of a motion plan before its execution in the real world. Such ability
allows robots to test their plans on a simulation generated using its current
knowledge, allowing them to verify a plan safety and feasibility without the risk

of damaging itself or its surrounding environment.

4.2.1 Waypoint Generator

The waypoint generator receives a sequence of goal points in a large—scale
environment and the robot’s current position. It then queries the on—demand
database for the local metric map. We adapted the PRM algorithm proposed by
[54] to the mobile robot 2D navigation domain. It starts by generating n random
sample points N; on the metric map re—sampling any point outside of the map
free space Cgree until n samples are successfully generated. Then, for each
sample WV, k valid edges are generating connecting JNj; to its nearest neighbors.
An edge E(NV;, W) is considered valid if) and JV; can be connected by a
straight line completely inside Cfr. Wwhile also being smaller than the maximum
distance threshold d,,,,. After generating all the edges, any sample that is not
connected to any other node is re—sampled, and its edges are generated. This
whole process depends solely on the 2D metric map, and can be performed off—

line (when downloading the on—demand database) or whenever the robot has

32

available processing power. After receiving a goal point N, and an initial
position N, the algorithm adds both to the PRM graph, connecting each to their
k nearest neighbors. Finally, it finds the list of waypoints that are part of the
shortest path between N; and N using the Dijkstra’s Algorithm [65]. This list
of waypoints is then sent to the RL policy one—by—one, by sending the next

waypoint whenever the robot is close enough to the current goal.

4.2.2 Hybrid PRM—RL Planner

This hybrid PRM—RL approach can be seen as a Global—Local planning
scheme, where the PRM algorithm is responsible for generating a sparse set of
goals based on the global view, while the RL algorithm should use the local data
to react to dynamic changes in the environment while also following the goals
set by the PRM block. The overall planning architecture can be seen in Figure
7.

After receiving a goal point, the hybrid planner sends the current robot
position and the goal point to the PRM module. The PRM module generates a
sequence of valid waypoints and returns it to the planner. The waypoint handler
sub—module loop through this sequence, sending the waypoints one by one to
the navigation policy. Every time a new waypoint is sent, a 15 seconds timer is
started. If the navigation policy cannot reach the waypoint within this time, the
hybrid planner performs replannning using the robot’s new current position. The
navigation policy uses only the actor—network when performing online actions,

speeding up the process. After arriving at the waypoint, the navigation policy

33

Hybrid Navigation

Hybrid Planner PRM
‘ﬁ}‘ Send goal and robot position |
r ~

>

‘ Get next goal
i I

Success |
I .
-————f—-—— Sequence of waypoints

Waypoints T

=
=

L
b

Handle

r 3

[}

+—=

! Start
U .
. timer
ol

(]

7

v

| 15s |
time

bl
Stop

timer Completion signal

Send next waypoint

N/

Figure 7 — Hybrid Planner Structure
sends a completion signal back to the hybrid planner, stopping the timer and
requesting the next waypoint. After the robot arrives at the final goal, the hybrid

planner emits a mission completed signal.

34

5.Experiments and Discussion

In this section, we evaluate the performance of the proposed hybrid

navigation method.

5.1 Number of Samples

The number of samples n is one of the key parameters of the PRM algorithm.
Too few and you might get a disconnected graph, which would fail to find a valid
path requiring the graph to be re—generated. Too many and the algorithm’s
exponential nature makes the process time—inefficient. We conducted
experiments to investigate the influence of the number of samples on the
algorithm’s performance. We used nine different metric maps from two different
environments: the 1% floor of the KDJ Convention Center and the 7™ floor of the
Corporation Collaboration Center from Sungkyunkwan University as shown in
Figure 8. Table 1 shows each map size information. We used each place’s grid
map width and height to calculate the overall map size. To calculate the free
space ratio, we divided the number of free pixels by the total number of pixels
in the grid map image. Finally, to generate the free space area, we multiplied

the map’s total size by the free space ratio.

35

Table 1 — Map Information

Place Name Place Total Area Free Space Free Space Area
(m?) Ratio (m?)
KDJ Convention Center
1* floor 39759.4 0.123 4890.41
corridor 1 13632.0 0.258 3517.06
corridor 2 4672.0 0.391 1826.75
corridor 3 3124.0 0.271 846.60
Corporate Collaboration Center 7" floor
corridor 1 350.0 0.160 56.01
corridor 2 528.0 0.277 146.42
corridor 3 157.25 0.513 80.70
corridor 4 200.0 0.275 55.09
corridor 5 423.0 0.212 89.75

Test Environments
& <

.

: [
85769 | 85765 | 85761 cO5TSTa 65753

g (==
smg | ssres éj Cuwas

s

Corporate Collaboration Center KDJ Convention Center
7t Floor 1%t Floor

Figure 8 — Mapped Environments. The mapped area is shown in red.

36

We then heuristically chose a set of the number of samples n=
{50,100,200,300,400,500} , and ran the graph generation and pathfinding
algorithm 50 times for each value of n on each map. Figure 9 shows the
influence of the number of samples to four performance measurements: the time
taken to build the PRM graph; the time taken to find a valid path from N; to NV;
the length of such path; and whether or not the path could be found. The values
shown in Figure 9 are averaged across the 50 different tries. We can easily
notice that while the PRM building time grew quadratically with the number of
samples, the path search time grew linearly. Because in our approach we can

generate those graphs off—line when downloading the map, the effect of the

——cc_f1 #-cc_cl —A—cc_c2 —cc_c3 —»T7th_cl ——cc_f1 cc_cl —A—cc_c2 —¢cc_c3 —*—Tth_cl
—e—7th_c2 ——7th_c3 ——7th_c4 —T7th_c5 —8-7th 2——Tth 3——7th o4 —Tth.c5
20000 &0
50
15000
0 40
10000 30
5000 1 2 20
= y 10
0 = o
50 100 200 300 400 500 50 100 200 300 400 500
(a) Graph build time (ms) (b) Path search time (ms)
——cc_f1 cc_cl —h—cc_c2 —¥—cc_c3 —%Tth_cl —o—cc_f1 cc_cl —h—cc_c2 —¥—cc_c3 —¥—Tth_cl
—8—7th_c2 ——7th_c3 7th_c4 7th_c5 —@—7th_c2 ——T7th_c3 7th_c4 7th_c5
200 1 > 3% - — »
¢——%-.'-\, = i V’
150 ~— . . . 08
06
100
04
[2 2 : 2 . 1 . 4 ®
50 A — e e = 02
0 0
50 100 200 300 400 500 50 100 200 300 400 500
(c) Path length (m) (d) Success rate

Figure 9 — PRM performance based on the number of samples (x—axis). In the
graph labels, “cc” stands for Convention Center, “7th” for the 7th floor of the
Corporate Collaboration Center and “c_i” for the corridor_i.

37

graph build time on the robot’s performance can be mitigated. Interestingly,
smaller places have shown a higher path search time for the same number of
samples when compared to larger places. This is due to the nature of the
Dijkstra’s algorithm, where if many points are close to each other, the number
of valid paths to the goal rises, increasing the path searching time. Moreover,
for each map, there is a minimum number of nodes so that the path can be
successfully found. In a real application, whenever a path cannot be found, the
graph should be re—generated, leading to slowdowns or even deadlocks. This
1s not a desirable condition, showing that an optimal number of samples is
necessary. Finally, the number of nodes did not seem to interfere with the
overall path length.

These findings motivated us to find optimal n values based on the
environment free space size. Thus, we performed a linear regression while
optimizing two constraints: the path search time should be no longer than 15ms,
and the success rate should be above 90%. Such optimization yield the following

equation:

Number of Samples = ceil(0.05 x Free Space Area + 84), Eq. 19

where ceil 1s the rounding up operation. We then used Eq. 19 to calculate
the optimal number of samples n* for each map. After re—running the tests 50

more times using the corresponding n* values, we obtained the results shown
in Table 2. Using the proposed n* values, both constraints were satisfied on

every map.

Faust et al. [68] used fixed densities of 0.1x, 0.2x, and 0.4x, while we used

38

the regressed formula shown in Eq. /9. For smaller maps, our approach had a
higher number of nodes on average but a way lower amount of nodes on bigger
maps. Faust et al. had success rates of 32%, 36%, and 50%, respectively, while
our approach had a 90% success rate on executing the generated paths. It
should be noted that Faust et al. maps were more complex than the ones used
in our experiments. Faust et al. also did not perform edge collision checks to
allow faster PRM graph generation. Instead, they validated the edges using a
probability distribution of whether the RL algorithm would be able to follow such
edge. This approach had a trade—off between lower success rates and lower
graph construction times. We generated the PRM graph only when receiving the
map, allowing us to check edge collision and generate safer paths, while keeping

the real—timeness of the hybrid planner.

5.2 Loss Function Regularizer

To evaluate the influence of the regularization terms f; and B, from Eqg. 18,
we trained the robot using three different values for both regularizers: g, =
B, ={0,1.0,5.0}. The average rewards obtained during each training are shown
in Figure 10. The training was done in the mental simulation of the 7" floor of
the Corporate Collaboration Center, shown in Figure 8. All models were trained
from scratch, using an Nvidia RTX 2080TI GPU to perform the batch
optimizations. Each training session ended after 30000 episodes (approximately
1 million experiences and 116 hours of training). All the hyper—parameters

were the same across the three models apart from the regularization term

39

Table 2 — Optimized Number of Samples

Place Name Number Graph Path Path Success
of Build Search Length Rate
Samples Time Time (m)
(ms) (ms)

KDJ Convention Center

1° floor 329 2664.3 12.06 152.58 92%
corridor 1 260 1996.5 10.18 114.43 94 %
corridor 2 176 1502.3 9.15 39.41 100%
corridor 3 127 759.68 7.86 50.68 98%

Corporate Collaboration Center 7™ floor
corridor 1 87 247.98 5.22 25.60 92%
corridor 2 92 183.0 4.68 59.48 94 %
corridor 3 89 195.37 6.56 13.41 92%
corridor 4 87 119.20 4.99 6.71 98%
corridor 89 169.88 5.33 40.57 96%

5

Figure 10 shows that by adding a small regularization (green line) term to
encourage the robot to move forward speeds up the learning when compared
with the training without regularization (blue line). When there was no
regularization, the robot would initially learn that simply not moving is a good
strategy to avoid collisions. This behavior slows down the training and the
variety of the experiences collected. The regularization term is a way to induce
the robot to move, therefore improving the exploration of initial steps. The un—
regularized policy eventually achieves similar rewards as the regularized
version, which shows that most of the regularization benefits show on the
exploration phase. In other words, the regularized model achieves similar

performance while requiring a smaller amount of training. However, if the

40

—Reg:= 5.0
25+ —— Reg=1.0
—— Reg = 0.0
2.0 1+
]
o 1.5 A
©
2
]
1.0
7]
o
o
Y 051
S
0.0 - Trim
of i T
0 5 - l" d l ' . ‘I(|
—u. : ik .ql AL [
| "_\1!"{%‘”
—1.0 T T T T T T
0 5000 10000 15000 20000 25000 30000

Episodes

Figure 10 — Moving average of the rewards obtained during each training. Each
vertical light—colored interval represents the moving standard deviation. A
window of 100 episodes was used for both moving average and moving standard
deviation.

regularization term is too big (red line), it can hinder the robot’s performance
or even make the robot not learn at all. When using high regularization values,
the robot would ignore the reward and optimize only the regularization term,

which resulted in the robot going straight into walls.

41

5.3 Hybrid Navigation

To verify the robustness of the hybrid navigation method proposed in this
work, we performed a long—range navigation mission in a simulated
environment. We compared our work with the state—of—the—art motion planner
Move Base. Whereas our hybrid autonomous navigation algorithm needs only
23 sparse laser range readings, Move Base utilizes all the 690 ranges. Hence,
we also compared our work with a Constrained Move Base, which only received
the same 23 range readings as our algorithm. Finally, we also tested how the
pure RL policy would deal with a long—range mission. The task environment is
shown in Figure 11. The robot should start from one of the edges of the building
and navigate without collisions until the opposing end. The total path has
approximately 140 meters. We performed the same task 10 times for each
planner. The summary of this experiment is shown in Table 3.

We can see that the pure RL policy was not able to complete a long—range
task without colliding. Due to the RL algorithm receiving only the Euclidian
distance to the goal, the relative angle would make the robot want to turn back,
go against a wall and then try to avoid hitting it, repeating this process in a loop.
This behavior ultimately led to the robot going too close to a wall and colliding
with it. Using only the RL policy resulted in the robot failing to leave the first

corridor on all tries.

42

Table 3 — Navigation Task Results

Success Failure
S

Method A.verage Average A‘verage uccess

Distance . Distance Rate

Time (s)
(m) (m)
Move Base 141.04 123.31 — 100%
Constrained Move 140.21 125.19 26.87 60%
Base
Pure RL — — 14.7 0%
Hybrid PRM—-RL 149.71 160.45 102.4 90%

Navigation Task

EEBEIEEERE T
JHEIEEIEE
el e 0l By ol B B

85769

N

Figure 11 — Long—range navigation task.

43

The baseline algorithm (i.e., Move Base) was able to perform the task
seamlessly in the shortest time and 100% success rate. Nonetheless, after
reducing the laser scanner resolution, the algorithm performed poorly. Due to
the lower resolution, the robot failed to perceive the obstacle when turning the
first corner, hitting it 40% of the time (usually when entering the curve too
close to the wall). Our proposed hybrid PRM—RL approach was able to complete
the task 90% of the time, using only 23 sparse laser scans to avoid obstacles,
and taking 7ms to generate a control command. The single failure happened due
to the PRM algorithm sampling a point too close to obstacles, which led to a
collision. The algorithm, however, could not perform as well as the original Move
Base algorithm, taking more time and some times a longer path. The main cause
was the localization algorithm miscalculating the robot position, then suddenly
updating to the correct position further ahead. Occasionally, this would cause
the robot to miss one of the PRM goals, turning back, reaching that goal, then
turning back again to continue the original path. Such behavior increased the
average time and distance taken to finish the task.

This validation experiment mimics the application proposed on this work,
where the mental simulation can be used to verify the feasibility of a plan. If the
sampled path contains a node too close to an obstacle, which would cause a
collision in the simulation, the roadmap can be re—sampled and a new path
generated. This would avoid the robot the need of the robot performing such

action in the real world, enhancing its overall safety.

44

6.Conclusion and Future Work

In this paper, a novel automatic mental simulation framework was proposed.
We have shown the usage of TOSM for environmental modeling and extended
its capabilities to represent robotic agents as well. This TOSM—based data was
used to generate a simulated environment without the need for human aid,
depending only on the robot known information. Such simulation is robust to
new objects, generating placeholders whenever an object has no 3D model
available. This allows our approach to be used in unknown environments,
regardless of the availability of 3D models for the encountered objects. We
showed that the mental simulation system could be used to train RL policies.
We also proposed an autonomous navigation policy that uses a sparse laser
range scan and a relative position in order to navigate in an unknown
environment. This policy used a custom loss with a regularization term that
improved the learning speed of the algorithm when compared with the baseline.
We also proposed a hybrid navigation algorithm that integrates a sampling—
based planner with an RL policy, enabling real—time long—range navigation.
Even though the path taken by our proposed algorithm was less optimal than the
state—of—the—art baseline, it showed a higher success rate when both
algorithms were using only a sparse input. We showed that mental simulation
could be used as a validation step before acting on the real world, enhancing the
robot’s safety.

As an ongoing work, we will continue to further improve the RL policy by
adding dynamic obstacles to the environment to further enhance the robot's

reactiveness. We will also port the mental simulation to a mobile robot to fully

45

integrate our proposed method with physical agents. The mental simulation can
be a central component of the new generations of robots. By using low latency
5G connections, robots can communicate with the cloud in real time. Thus, the
mental simulation can be run on a centralized cloud solution, validating robot

plans on real—time, and improving the overall safety of mobile robot operations.

46

[10]

[11]

[12]
[13]

[14]

[15]

References

D. Kahneman and A. Tversky, “The Simulation Heuristic,” STANFORD
UNIV CA DEPT Psychol., vol. TR—5, 1981.

T. Suddendorf and J. Busby, “Mental time travel in animals?,” 7rends Cogn.
Sci., vol. 7, no. 9, pp. 391-396, 2003.

P. Boyer, “Evolutionary economics of mental time travel?,” 7rends Cogn.
Scr., vol. 12, no. 6, pp. 219-224, 2008.

N. Burgess, “Spatial cognition and the brain,” Ann. N. Y. Acad. Sci., vol.
1124, pp. 77-97, 2008.

G. Hesslow, “The current status of the simulation theory of cognition,”
Brain Res., vol. 1428, pp. 71-79, 2012.

R. M. Gordon, “Folk psychology as simulation,” Mind Lang., vol. 1, no. 2,
pp. 158-171, 1986.

A. M. TURING, “COMPUTING MACHINERY AND INTELLIGENCE,” Mind,
vol. LIX, no. 236, pp. 433-460, Oct. 1950.

M. Polceanu and C. Buche, “Computational mental simulation: A review,”
Comput. Animat. Virtual Worlds, vol. 28, no. 5, pp. 1-15, 2017.

I. Kostavelis, K. Charalampous, A. Gasteratos, and J. K. Tsotsos, “Robot
navigation via spatial and temporal coherent semantic maps,” Eng. Appl
Artif. Intell., vol. 48, pp. 173-187, 2016.

A. Cosgun and H. I. Christensen, “Context—aware robot navigation using
interactively built semantic maps,” Paladyn, vol. 9, no. 1, pp. 254-276,
2018.

R. Waibel, M. and Beetz, M. and Civera, J. and D’Andrea, R. and Elfring, J.
and Galvez—Lopez, D. and Haussermann, K. and Janssen, R. and Montiel,
J.M.M. and Perzylo, A. and Schiessle, B. and Tenorth, M. and Zweigle, O.
and van de Molengraft, “RoboEarth—A World Wide Web for Robots,” Robot.
Autom. Mag. IEEFE, vol. 18, no. June, pp. 69-82, 2011.

B. L. Douglas, “CYC: A Large—Scale Investment in Knowledge
Infrastructure,” Commun. ACM, vol. 38, no. 11, pp. 33-38, 1995.

I. Niles and A. Pease, “Towards a standard upper ontology,” Form. Ontol.
Inf. Syst. Collect. Pap. from Second Int. Conf., pp. 2-9, 2001.

R. Gupta and M. J. Kochenderfer, “Common sense data acquisition for
indoor mobile robots,” Proc. Natl. Conf. Artif. Intell., vol. 94041, pp. 605
610, 2004.

M. Firdaus—Nawi, O. Noraini, M. Y. Sabri, A. Siti—Zahrah, M. Zamri—Saad,

47

[18]

[19]

[20]

[21]

[22]

[23]

and H. Latifah, “Encoder—Decoder with Atrous Separable Convolution for
Semantic Image Segmentation,” Pertanika J. Trop. Agric. Sci., vol. 34, no.
1, pp. 137-143, 2011.

J. Han, L. Yang, D. Zhang, X. Chang, and X. Liang, “Reinforcement
Cutting—Agent Learning for Video Object Segmentation,” FProc. [EEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 9080-9089, 2018.
S. Brahimi, N. Ben Aoun, A. Benoit, P. Lambert, and C. Ben Amar,
“Semantic segmentation using reinforced fully convolutional densenet
with multiscale kernel,” Multimed. Tools Appl., vol. 78, no. 15, pp. 22077-
22098, 2019.

M. Tenorth and M. Beetz, “KNOWROB — Knowledge processing for
autonomous personal robots,” 2009 IEEE/RSJ Int. Conf. Intell. Robot. Syst.
IROS 2009, no. November 2009, pp. 4261-4266, 2009.

M. Beetz, M. Tenorth, and J. Winkler, “Open—EASE,” Proc. — IEEFE Int.
Conf. Robot. Autom., vol. 2015—June, no. June, pp. 1983-1990, 2015.

M. Beetz, D. Bessler, A. Haidu, M. Pomarlan, A. K. Bozcuoglu, and G.
Bartels, “Know Rob 2.0 — A 2nd Generation Knowledge Processing
Framework for Cognition—Enabled Robotic Agents,” Proc. — IEEE Int.
Conf. Robot. Autom., pp. 512-519, 2018.

T. Lombrozo, “Learning by Thinking’ in Science and in Everyday Life,”
Sci. Imagin., p. 230, 2019.

L. Kunze and M. Beetz, “Envisioning the qualitative effects of robot
manipulation actions using simulation—based projections,” Artif. Intell,
vol. 247, pp. 352-380, 2017.

S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning
for robotic manipulation with asynchronous off—policy updates,” Proc. —
IEEE Int. Conf. Robot. Autom., pp. 3389-3396, 2017.

[24] L. Tai, G. Paolo, and M. Liu, “Virtual—to—real deep reinforcement learning:

[25]

[26]

Continuous control of mobile robots for mapless navigation,” /EEE Int.
Conf. Intell. Robot. Syst., vol. 2017 —Septe, pp. 31-36, 2017.

P. Shah, M. Fiser, A. Faust, J. C. Kew, and D. Hakkani—Tur, “FollowNet:
Robot Navigation by Following Natural Language Directions with Deep
Reinforcement Learning,” 2018.

G. Kahn, A. Villaflor, B. Ding, P. Abbeel, and S. Levine, “Self—Supervised
Deep Reinforcement Learning with Generalized Computation Graphs for
Robot Navigation,” Proc. — IEEE Int. Conf. Robot. Autom., pp. 5129-5136,
2018.

48

[32]

[33]

[34]

[35]

[36]

[37]
[38]

G. A. Miller, “WordNet: A Lexical Database for English,” Commun. ACM,
vol. 38, no. 11, pp. 39-41, 1995.

H. Liu and P. Singh, “ConceptNet — a practical commonsense reasoning
tool—kit,” BT Technol. J., vol. 22, no. 4, pp. 211-226, Oct. 2004.

K. Sterelny, The representational theory of mind: an introduction. B.
Blackwell, 1991.

J. Decety, “Brain Structures Participating in Mental,” Acta Psychol
(Amst)., vol. 73, pp. 13-34, 1990.

A. Tversky and D. Kahneman, “Availability: A heuristic for judging
frequency and probability,” Cogn. Psychol., vol. 5, no. 2, pp. 207-232,
1973.

H. B. Kappes and C. K. Morewedge, “Mental Simulation as Substitute for
Experience,” Soc. Personal. Psychol Compass, vol. 10, no. 7, pp. 405—
420, 2016.

M. Hegarty, “Mechanical reasoning by mental simulation,” 7rends Cogn.
Scr., vol. 8, no. 6, pp. 280-285, 2004.

C. J. Bates, 1. Yildirim, J. B. Tenenbaum, and P. W. Battaglia, “Humans
predict liquid dynamics using probabilistic simulation,” CogSci 2015, no.
July, pp. 172-177, 2015.

B. Bergen and K. Wheeler, “Grammatical aspect and mental simulation,”
Brain Lang., vol. 112, no. 3, pp. 150-158, 2010.

L.J.Speed and A. Majid, “An Exception to Mental Simulation: No Evidence
for Embodied Odor Language,” Cogn. Sci., vol. 42, no. 4, pp. 1146-1178,
2018.

J. E. Laird, “It knows what you’re going to do,” 2001, pp. 385-392.

D. Buchsbaum, B. Blumberg, C. Breazeal, and A. N. Meltzoff, “A
simulation—theory inspired social learning system for Interactive
characters,” Proc. — [EEE Int. Work. Robot Hum. Interact. Commun., vol.
2005, pp. 85-90, 2005.

N. L. Cassimatis, J. G. Trafton, M. D. Bugajska, and A. C. Schultz,
“Integrating cognition, perception and action through mental simulation in
robots,” Rob. Auton. Syst., vol. 49, no. 1—2 SPEC. ISS., pp. 13-23, 2004.
M. Polceanu, M. Parenthéen, and C. Buche, “ORPHEUS: Mental simulation
as support for decision—making in a virtual agent,” FProc. 28th Int. Florida
Artif. Intell. Res. Soc. Conf. FLAIRS 2015, pp. 73-78, 2015.

C. Buche, N. Le Bigot, and M. Polceanu, “Simulation within simulation for
agent decision—making: Theoretical foundations from cognitive science to

49

[42]

[43]

[44]
[45]

[46]

operational computer model,” Cogn. Syst. Res., vol. 40, pp. 46-58, 2016.
P. Vicente, L. Jamone, and A. Bernardino, “Online body schema adaptation
based on internal mental simulation and multisensory feedback,” Front.
Robot. Al, vol. 3, no. MAR, 2016.

D. Vanderelst and A. Winfield, “An architecture for ethical robots inspired
by the simulation theory of cognition,” Cogn. Syst. Res., vol. 48, pp. 56—
66, 2018.

B. Gundersen, “Forming artificial memories during sleep,” Nat. Neurosci.,
vol. 18, no. 4, p. 483, 2015.

H. F. Olafsdéttir, F. Carpenter, and C. Barry, “Coordinated grid and place
cell replay during rest,” Nat. Neurosci., vol. 19, no. 6, pp. 792-794, 2016.
L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting
in partially observable stochastic domains,” Artif. Intell, vol. 101, no. 1—
2, pp. 99-134, 1998.

[47] V. Mnih et al, “Human—Ilevel control through deep reinforcement learning,”

Nature, vol. 518, no. 7540, pp. 529-533, Feb. 2015.

[48] T. P. Lillicrap et al, “Continuous control with deep reinforcement learning,”

[49]

[50]

[51]
[52]

[53]

[54]

[55]

[56]

4th Int. Conf. Learn. Represent. ICLK 2016 — Conft. Track Proc., 2016.
S. Fujimoto, H. wvan Hoof, and D. Meger, “Addressing Function
Approximation Error in Actor—Critic Methods,” 35th Int. Conf. Mach.
Learn. ICML 2018, vol. 4, pp. 2587-2601, Feb. 2018.

P. Long, T. Fanl, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards optimally
decentralized multi—robot collision avoidance via deep reinforcement
learning,” Proc. — IEEE Int. Conf. Robot. Autom., pp. 6252-6259, 2018.
S. D. Pendleton et al., “Perception, planning, control, and coordination for
autonomous vehicles,” Machines, vol. 5, no. 1, 2017.

M. Seda, “Roadmap Methods vs . Cell Decomposition in Robot Motion
Planning,” pp. 127-132, 2007.

J. Lee, Os. Kwon, L. Zhang, and S. E. Yoon, “A selective retraction—based
RRT planner for various environments,” /EEE Trans. Robot., vol. 30, no.
4, pp. 1002-1011, 2014.

L. Kavraki and J. C. Latombe, “Randomized preprocessing of configuration
space for fast path planning,” in Proceedings — [EEE I[nternational
Conference on Robotics and Automation, 1994, no. pt 3, pp. 2138-2145.
S. M. Lavalle and S. M. Lavalle, “Rapidly—Exploring Random Trees: A
New Tool for Path Planning,” 1998.

S. Karaman and E. Frazzoli, “Sampling—based algorithms for optimal

50

[61]

[62]

[63]

[64]
[65]

motion planning,” /nt. J. Rob. Res., vol. 30, no. 7, pp. 846-894, 2011.

M. Elbanhawi and M. Simic, “Sampling—based robot motion planning: A
review,” IEEE Access, vol. 2, pp. 56-77, 2014.

A. Faust et al, “PRM—RL: Long—range robotic navigation tasks by
combining reinforcement learning and sampling—based planning,” Proc. —
IEEE Int. Conf. Robot. Autom., pp. 5113-5120, 2018.

M. Fyhn, S. Molden, M. P. Witter, E. I. Moser, and M. B. Moser, “Spatial
representation in the entorhinal cortex,” Science (80—.)., vol. 305, no.
5688, pp. 1258-1264, 2004.

S.—H. Joo, S. Manzoor, Y. G. Rocha, H—U. Lee, and T.—Y. Kuc, “A
Realtime Autonomous Robot Navigation Framework for Human like High—
level Interaction and Task Planning in Global Dynamic Environment,” 2019.
M. A. Musen, “The protégé project,” Al Matters, vol. 1, no. 4, pp. 4-12,
Jun. 2015.

D. Silver et al., “A general reinforcement learning algorithm that masters
chess, shogi, and Go through self—play,” Science (80—.)., vol. 362, no.
6419, pp. 1140-1144, 2018.

OpenAl et al., “Dota 2 with Large Scale Deep Reinforcement Learning,
2019.

R. Bellman, “The theory of dynamic programming,” 1954.

E. W. Dijkstra and others, “A note on two problems in connexion with
graphs,” Numer. Math., vol. 1, no. 1, pp. 269-271, 1959.

2

51

o
o
o
M)

A A EHIA

o

4

Yuri Goncalves Rocha

™

o

o
H

0

oy

Al & o]

o

ol

o
ol
A

i

Rt
~

Ho

ojy

=
=

to] @43 22 AA

A}4-3]

DERS

A Ty

EN
=

A

3t

EIEER

9]

187 4

Aelol AbsA o=z AlEdeld

Absre] b

-
L.

.

R

A

K

tol long—term WH| Aol 7]5S

A

= AR

4

wim]Alo] A

L

}o] B 2]

52

O
HolE WS AFg3le] long—term uWB] Aol AE FAE S AR, Ao

WHs Adete o 7Tms7t A8 F T

FA 0 Al A EF oA, A& F3, A3 srs, AE AE, Probabilistic Roadmap

53

Master- s Thesis Mental Simulation for Autonomous Learning and Planning 2020 Yuri Goncalves Rocha

